Genetic studies of autosomal recessive primary microcephaly in 33 Pakistani families: novel sequence variants in ASPM gene

Neurogenetics ◽  
2006 ◽  
Vol 7 (2) ◽  
pp. 105-110 ◽  
Author(s):  
Asma Gul ◽  
Muhammad Jawad Hassan ◽  
Saqib Mahmood ◽  
Wenje Chen ◽  
Safa Rahmani ◽  
...  
2009 ◽  
Vol 25 (6) ◽  
pp. 715-720 ◽  
Author(s):  
Rizwana Kousar ◽  
Hira Nawaz ◽  
Maryam Khurshid ◽  
Ghazanfer Ali ◽  
Saad Ullah Khan ◽  
...  

BMC Neurology ◽  
2011 ◽  
Vol 11 (1) ◽  
Author(s):  
Rizwana Kousar ◽  
Muhammad Jawad Hassan ◽  
Bushra Khan ◽  
Sulman Basit ◽  
Saqib Mahmood ◽  
...  

2014 ◽  
Vol 23 (22) ◽  
pp. 5940-5949 ◽  
Author(s):  
Muzammil A. Khan ◽  
Verena M. Rupp ◽  
Meritxell Orpinell ◽  
Muhammad S. Hussain ◽  
Janine Altmüller ◽  
...  

F1000Research ◽  
2017 ◽  
Vol 6 ◽  
pp. 2163
Author(s):  
Desaraju Suresh Bhargav ◽  
N. Sreedevi ◽  
N. Swapna ◽  
Soumya Vivek ◽  
Srinivas Kovvali

Microcephaly is a genetically heterogeneous disorder and is one of the frequently notable conditions in paediatric neuropathology which exists either as a single entity or in association with other co-morbidities. More than a single gene is implicated in true microcephaly and the list is growing with the recent advancements in sequencing technologies. Using massive parallel sequencing, we identified a novel frame shift insertion in the abnormal spindle-like microcephaly-associated protein gene in a client with true autosomal recessive primary microcephaly.  Exome sequencing in the present case helped in identifying the true cause behind the disease, which helps in the premarital counselling for the sibling to avoid future recurrence of the disorder in the family.


2008 ◽  
Vol 19 (1) ◽  
pp. 115-125 ◽  
Author(s):  
Ka-Wing Fong ◽  
Yuk-Kwan Choi ◽  
Jerome B. Rattner ◽  
Robert Z. Qi

Microtubule nucleation and organization by the centrosome require γ-tubulin, a protein that exists in a macromolecular complex called the γ-tubulin ring complex (γTuRC). We report characterization of CDK5RAP2, a novel centrosomal protein whose mutations have been linked to autosomal recessive primary microcephaly. In somatic cells, CDK5RAP2 localizes throughout the pericentriolar material in all stages of the cell cycle. When overexpressed, CDK5RAP2 assembled a subset of centrosomal proteins including γ-tubulin onto the centrosomes or under the microtubule-disrupting conditions into microtubule-nucleating clusters in the cytoplasm. CDK5RAP2 associates with the γTuRC via a short conserved sequence present in several related proteins found in a range of organisms from fungi to mammals. The binding of CDK5RAP2 is required for γTuRC attachment to the centrosome but not for γTuRC assembly. Perturbing CDK5RAP2 function delocalized γ-tubulin from the centrosomes and inhibited centrosomal microtubule nucleation, thus leading to disorganization of interphase microtubule arrays and formation of anastral mitotic spindles. Together, CDK5RAP2 is a pericentriolar structural component that functions in γTuRC attachment and therefore in the microtubule organizing function of the centrosome. Our findings suggest that centrosome malfunction due to the CDK5RAP2 mutations may underlie autosomal recessive primary microcephaly.


2020 ◽  
Vol 63 (12) ◽  
pp. 104096
Author(s):  
Ehsan Razmara ◽  
Homeyra Azimi ◽  
Ali Reza Tavasoli ◽  
Elnaz Fallahi ◽  
Sadaf Valeh Sheida ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document