Spastic paraplegia type 46: novel and recurrent GBA2 gene variants in a compound heterozygous Italian patient with spastic ataxia phenotype

Author(s):  
Marta Gatti ◽  
Stefania Magri ◽  
Daniela Di Bella ◽  
Elisa Sarto ◽  
Franco Taroni ◽  
...  
2016 ◽  
Vol 4 (12) ◽  
pp. 1151-1156 ◽  
Author(s):  
Johanna Palmio ◽  
Mikko Kärppä ◽  
Peter Baumann ◽  
Sini Penttilä ◽  
Jukka Moilanen ◽  
...  

2018 ◽  
Vol 19 (10) ◽  
pp. 3099 ◽  
Author(s):  
Anna Malekkou ◽  
Maura Samarani ◽  
Anthi Drousiotou ◽  
Christina Votsi ◽  
Sandro Sonnino ◽  
...  

The GBA2 gene encodes the non-lysosomal glucosylceramidase (NLGase), an enzyme that catalyzes the conversion of glucosylceramide (GlcCer) to ceramide and glucose. Mutations in GBA2 have been associated with the development of neurological disorders such as autosomal recessive cerebellar ataxia, hereditary spastic paraplegia, and Marinesco-Sjogren-Like Syndrome. Our group has previously identified the GBA2 c.1780G>C [p.Asp594His] missense mutation, in a Cypriot consanguineous family with spastic ataxia. In this study, we carried out a biochemical characterization of lymphoblastoid cell lines (LCLs) derived from three patients of this family. We found that the mutation strongly reduce NLGase activity both intracellularly and at the plasma membrane level. Additionally, we observed a two-fold increase of GlcCer content in LCLs derived from patients compared to controls, with the C16 lipid being the most abundant GlcCer species. Moreover, we showed that there is an apparent compensatory effect between NLGase and the lysosomal glucosylceramidase (GCase), since we found that the activity of GCase was three-fold higher in LCLs derived from patients compared to controls. We conclude that the c.1780G>C mutation results in NLGase loss of function with abolishment of the enzymatic activity and accumulation of GlcCer accompanied by a compensatory increase in GCase.


Genes ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1876
Author(s):  
Julian Theuriet ◽  
Antoine Pegat ◽  
Pascal Leblanc ◽  
Sandra Vukusic ◽  
Cécile Cazeneuve ◽  
...  

Biallelic mutations in the CYP7B1 gene lead to spastic paraplegia-5 (SPG5). We report herein the case of a patient whose clinical symptoms began with progressive lower limb spasticity during childhood, and who secondly developed amyotrophic lateral sclerosis/frontotemporal dementia (ALS/FTD) at the age of 67 years. Hereditary spastic paraplegia (HSP) gene analysis identified the compound heterozygous mutations c.825T>A (pTyr275*) and c.1193C>T (pPro398Leu) in CYP7B1 gene. No other pathogenic variant in frequent ALS/FTD causative genes was found. The CYP7B1 gene seems, therefore, to be the third gene associated with the phenoconversion from HSP to ALS, after the recently described UBQLN2 and ERLIN2 genes. We therefore expand the phenotype associated with CYP7B1 biallelic mutations and make an assumption about a link between cholesterol dyshomeostasis and ALS/FTD.


2022 ◽  
Vol 23 (1) ◽  
pp. 552
Author(s):  
Jaya Bagaria ◽  
Eva Bagyinszky ◽  
Seong Soo A. An

Autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) is an early-onset neurodegenerative disease that was originally discovered in the population from the Charlevoix-Saguenay-Lac-Saint-Jean (CSLSJ) region in Quebec. Although the disease progression of ARSACS may start in early childhood, cases with later onset have also been observed. Spasticity and ataxia could be common phenotypes, and retinal optic nerve hypermyelination is detected in the majority of patients. Other symptoms, such as pes cavus, ataxia and limb deformities, are also frequently observed in affected individuals. More than 200 mutations have been discovered in the SACS gene around the world. Besides French Canadians, SACS genetics have been extensively studied in Tunisia or Japan. Recently, emerging studies discovered SACS mutations in several other countries. SACS mutations could be associated with pathogenicity either in the homozygous or compound heterozygous stages. Sacsin has been confirmed to be involved in chaperon activities, controlling the microtubule balance or cell migration. Additionally, sacsin may also play a crucial role in regulating the mitochondrial functions. Through these mechanisms, it may share common mechanisms with other neurodegenerative diseases. Further studies are needed to define the exact functions of sacsin. This review introduces the genetic mutations discovered in the SACS gene and discusses its pathomechanisms and its possible involvement in other neurodegenerative diseases.


PLoS ONE ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. e0247683
Author(s):  
Joseph A. Johnston ◽  
David R. Nelson ◽  
Pallav Bhatnagar ◽  
Sarah E. Curtis ◽  
Yu Chen ◽  
...  

Essential fructosuria (EF) is a benign, asymptomatic, autosomal recessive condition caused by loss-of-function variants in the ketohexokinase gene and characterized by intermittent appearance of fructose in the urine. Despite a basic understanding of the genetic and molecular basis of EF, relatively little is known about the long-term clinical consequences of ketohexokinase gene variants. We examined the frequency of ketohexokinase variants in the UK Biobank sample and compared the cardiometabolic profiles of groups of individuals with and without these variants alone or in combination. Study cohorts consisted of groups of participants defined based on the presence of one or more of the five ketohexokinase gene variants tested for in the Affymetrix assays used by the UK Biobank. The rs2304681:G>A (p.Val49Ile) variant was present on more than one-third (36.8%) of chromosomes; other variant alleles were rare (<1%). No participants with the compound heterozygous genotype present in subjects exhibiting the EF phenotype in the literature (Gly40Arg/Ala43Thr) were identified. The rs2304681:G>A (p.Val49Ile), rs41288797 (p.Val188Met), and rs114353144 (p.Val264Ile) variants were more common in white versus non-white participants. Otherwise, few statistically or clinically significant differences were observed after adjustment for multiple comparisons. These findings reinforce the current understanding of EF as a rare, benign, autosomal recessive condition.


Author(s):  
Xiaojie Tian ◽  
Min Wang ◽  
Kaiyuan Zhang ◽  
Xinqing Zhang

AbstractBackground: Hereditary spastic paraplegia (HSP) is a neurodegenerative disease that is characterized by progressive weakness and spasticity of the lower extremities; HSP can present as complicated forms with additional neurological signs. More than 70 disease loci have been described with different modes of inheritance. Methods: In this study, nine subjects from a Chinese family that included two individuals affected by HSP were examined through detailed clinical evaluations, physical examinations, and genetic tests. Targeted exome capture technology was used to identify gene mutations. Results: Two novel compound heterozygous mutations in the SPG 11 gene were identified, c.4001_4002insATAAC and c.4057C>G. The c.4001_4002insATAAC mutation leads to a reading frame shift during transcription, resulting in premature termination of the protein product. The missense mutation c.4057C>G (p.H1353D) is located in a highly conserved domain and is predicted to be a damaging substitution. Conclusions: Based on the results described here, we propose that these novel compound heterozygous mutations in SPG 11 are the genetic cause of autosomal recessive HSP in this Chinese family.


2016 ◽  
Vol 16 (5-6) ◽  
pp. 373-381 ◽  
Author(s):  
Matthew J. Fraidakis ◽  
Maura Brunetti ◽  
Craig Blackstone ◽  
Massimo Filippi ◽  
Adriano Chiò

2014 ◽  
Vol 261 (9) ◽  
pp. 1825-1827 ◽  
Author(s):  
Maria Pia Giannoccaro ◽  
Rocco Liguori ◽  
Alessia Arnoldi ◽  
Vincenzo Donadio ◽  
Patrizia Avoni ◽  
...  

2020 ◽  
Vol 62 (1) ◽  
Author(s):  
Colin J. Mahoney ◽  
Thanuja Dharmadasa ◽  
William Huynh ◽  
Jean‐Pierre Halpern ◽  
Steve Vucic ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document