scholarly journals On the detachment of the gelatinous layer in tension wood fiber

2005 ◽  
Vol 51 (3) ◽  
pp. 218-221 ◽  
Author(s):  
Bruno Clair ◽  
Bernard Thibaut ◽  
Junji Sugiyama
Author(s):  
K. W. Robinson

Tension wood (TW) is an abnormal tissue of hardwood trees; although it has been isolated from most parts of the tree, it is frequently found on the upper side of branches and leaning stems. TW has been classically associated with geotropic alignment, but more recently it has been associated with fast growth. Paper made from TW is generally lower in strength properties. Consequently, the paper industries' growing dependence on fast growing, short- rotation trees will result in higher amounts of TW in the final product and a corresponding reduction in strength.Relatively few studies have dealt with the role of TW in the structure of paper. It was suggested that the lower strength properties of TW were due to a combination of factors, namely, its unique morphology, compression failures in the cell wall, and lower hemicellulose content. Central to the unique morphology of the TW fiber is the thick gelatinous layer (G-layer) composed almost entirely of pure cellulose.


1955 ◽  
Vol 3 (2) ◽  
pp. 177 ◽  
Author(s):  
AB Wardrop ◽  
HE Dadswell

The cell wall organization, the cell wall texture, and the degree of lignification of tension wood fibres have been investigated in a wide variety of temperate and tropical species. Following earlier work describing the cell wall structure of tension wood fibres, two additional types of cell wall organization have been observed. In one of these, the inner thick "gelatinous" layer which is typical of tension wood fibres exists in addition to the normal three-layered structure of the secondary wall; in the other only the outer layer of the secondary wall and the thick gelatinous layer are present. In all the tension wood examined the micellar orientation in the inner gelatinous layer has been shown to be nearly axial and the cellulose of this layer found to be in a highly crystalline state. A general argument is presented as to the meaning of differences in the degree, of crystallinity of cellulose. The high degree of crystallinity of cellulose in tension wood as compared with normal wood is attributed to a greater degree of lateral order in the crystalline regions of tension wood, whereas the paracrystalline phase is similar in both cases. The degree of lignification in tension wood fibres has been shown to be extremely variable. However, where the degree of tension wood development is marked as revealed by the thickness of the gelatinous layer the lack of lignification is also most marked. Severity of tension wood formation and lack of lignification have also been correlated with the incidence of irreversible collapse in tension wood. Such collapse can occur even when no whole fibres are present, e.g. in thin cross sections. Microscopic examination of collapsed samples of tension wood has led to the conclusion that the appearance of collapse in specimens containing tendon wood can often be attributed in part to excessive shrinkage associated with the development of fissures between cells, although true collapse does also occur. Possible explanations of the irreversible shrinkage and collapse of tension wood fibres are advanced.


IAWA Journal ◽  
2013 ◽  
Vol 34 (3) ◽  
pp. 273-284 ◽  
Author(s):  
Tokiko Hiraiwa ◽  
Tatsuya Toyoizumi ◽  
Futoshi Ishiguri ◽  
Kazuya Iizuka ◽  
Shinso Yokota ◽  
...  

To assess the characteristics of tension wood (TW) in Trochodendron aralioides Sieb. et Zucc., seedling stems were artificially inclined at angles of 30° (TW- 30), 50° (TW-50), and 70° (TW-70) from the vertical. At all angles, the growth promotion was pronounced on the upper side of the inclined stems, where excessive tensile growth stress was observed. A gelatinous layer (G-layer) formed in the tracheids of TW. The cell wall structure of the tracheids in TW was S1 + G. The G-layer had a small pit aperture angle <10°. TW-50 showed larger tensile growth stress, a thicker G-layer area, and a smaller pit aperture angle of the Glayer than TW-30 and TW-70. Lower levels of Klason lignin and hemicellulose and higher levels of α-cellulose content were observed in TW-50. In addition, an increase in glucose content and a decrease in xylose content in holocellulose were observed in TW-50. Therefore, it can be concluded that the degree of TW varied with different inclination angles.


BioResources ◽  
2019 ◽  
Vol 14 (4) ◽  
pp. 7675-7686
Author(s):  
Jong Sik Kim ◽  
Geoffrey Daniel

There is controversy concerning the presence of xyloglucans in gelatinous (G) layers of Populus spp. tension wood, particularly in mature G-fibers. Transmission electron microscopy (TEM) immunogold localization combined with LM15 antibody (recognizes XXXG-motif of xyloglucans, heptasaccharide) was used to investigate the distribution of xyloglucan epitopes in both transverse and radial sections of P. tremula tension wood. Results provided clear evidence for the presence of xyloglucans in both mature and developing G-layers. Developmental decrease of LM15 epitope localization in G-layers was also detected during G-fiber maturation. High magnification TEM observations showed specific localization of LM15 epitopes on newly synthesized cellulose macrofibrils present in the innermost layer of developing G-layers adjacent to the cell lumen, suggesting linkage between xyloglucans and cellulose macrofibrils. Possible mechanisms were discussed for developmental changes of xyloglucan with respect to the different results reported in the literature.


2009 ◽  
Vol 44 (1) ◽  
pp. 149-163 ◽  
Author(s):  
Hiroyuki Yamamoto ◽  
Julien Ruelle ◽  
Yoshiharu Arakawa ◽  
Masato Yoshida ◽  
Bruno Clair ◽  
...  

IAWA Journal ◽  
2005 ◽  
Vol 26 (2) ◽  
pp. 189-195 ◽  
Author(s):  
Bruno Clair ◽  
Joseph Gril ◽  
Kei'ichi Baba ◽  
Bernard Thibaut ◽  
Junji Sugiyama

The gelatinous layer (G-layer) of tension wood fibres in hardwood contributes to the mechanical function of the living tree and has significant consequences on properties of solid wood. Its size, shape and structure observed by optical or electron microscopy exhibits characteristic anatomical features. However, we found that sectioning of non-embedded wood samples results in an uncontrolled swelling of the G-layer. In order to assess this artefact, the shape and thickness of the G-layer was monitored by serial sections from an embedded wood sample, from its trimmed transverse face to that located several hundreds of micrometres deep. The results revealed that the initial cutting before embedding produced a border effect responsible for the swollen nature, which is similar to sections from non-embedded material. After a conventional embedding technique was applied, a section of at least 30 micrometres below the trimming surface is required to observe an un-swollen G-layer.


IAWA Journal ◽  
2001 ◽  
Vol 22 (2) ◽  
pp. 121-131 ◽  
Author(s):  
Bruno Clair ◽  
Bernard Thibaut

Macroscopic longitudinal shrinkage of beech and poplar tension wood is higher than in normal wood. This shrinkage is the result of mechanical interactions of cell wall layers. SEM observation of cut, dried surfaces showed that longitudinal shrinkage is much greater in the gelatinous layer than in other layers. AFM topographic images of the same cells, both in water and in air-dry conditions, confirm this result. Measurements on sections indicate around 4.7% longitudinal shrinkage for the G layer.


Sign in / Sign up

Export Citation Format

Share Document