SEM Study of Tension Wood Fiber Morphology and its Effect on Paper Properties

Author(s):  
K. W. Robinson

Tension wood (TW) is an abnormal tissue of hardwood trees; although it has been isolated from most parts of the tree, it is frequently found on the upper side of branches and leaning stems. TW has been classically associated with geotropic alignment, but more recently it has been associated with fast growth. Paper made from TW is generally lower in strength properties. Consequently, the paper industries' growing dependence on fast growing, short- rotation trees will result in higher amounts of TW in the final product and a corresponding reduction in strength.Relatively few studies have dealt with the role of TW in the structure of paper. It was suggested that the lower strength properties of TW were due to a combination of factors, namely, its unique morphology, compression failures in the cell wall, and lower hemicellulose content. Central to the unique morphology of the TW fiber is the thick gelatinous layer (G-layer) composed almost entirely of pure cellulose.

Author(s):  
Sebastian Hagel ◽  
Jesan Joy ◽  
Gianluca Cicala ◽  
Bodo Saake

AbstractCurrently, most of the collected waste medium-density fiberboards (MDF) is incinerated or landfilled, as economically viable recycling methods are yet to be developed. By steam refining waste medium-density fiberboards (MDF), it is possible to hydrolyze the incorporated resins and isolate a high yield fiber fraction. Further refining of the steam treated fibers might enable the fibers to be utilized in applications such as paper packaging, facilitating a cascading use of the waste material stream. To this end, intimate knowledge of the material is needed. In this study, the steam refined fibers of two waste MDF samples containing differing amounts of softwood and hardwood underwent refining and beating. The resulting fibers were characterized regarding their morphology and paper test sheets were produced to evaluate their strength (compression-, tensile- and tear-strength). Distinct differences in response to refining between the MDF samples were apparent. For the sample with the higher hardwood share an increase in strength properties with increasing steam treatment severities could be observed and it was possible to produce test sheets with comparable compression strength to recycled pulp for industrial corrugated paperboard. For the sample with a higher share of softwood, the steam treatment severity did not show any influence on fiber morphology or paper properties, and the resulting paper strength was low in comparison to the other steam refined waste MDF sample. Graphic Abstract


TAPPI Journal ◽  
2016 ◽  
Vol 15 (10) ◽  
pp. 643-651 ◽  
Author(s):  
ROBERT J. OGLESBY ◽  
HUMPHREY J. MOYNIHAN ◽  
RICARDO B. SANTOS ◽  
ASHOK GHOSH ◽  
PETER W. HART

The impact of commercially prepared, fully bleached pulp viscosity variation on handsheet physical properties was evaluated at different levels of pulp refining. Hardwood pulps from the same brownstock species mix, cooking parameters, and kappa numbers were processed through two different commercial bleach plants: one with a D0(EP)D1D2 sequence and the second with an OD0(EOP)D1 sequence. Additionally, a commercial softwood (predominately Scotts pine) brownstock pulp bleached by an OD0(EP)D1D2 sequence was employed in this study. Pulps with viscosities ranging from 14 to 21 mPa∙s were refined in a Valley beater to two freeness levels, and the associated handsheet physical properties were measured in this study. Over the pulp viscosity range of 14 to 21 mPa∙s, no clear correlation was found to exist between pulp viscosity and related paper physical properties. Finally, a series of laboratory prepared bleached pulps were purposely prepared under non-ideal conditions to reduce their final viscosities to lower values. Handsheets made from these pulps were tested in their unbeaten condition for physical strength properties. Significant and rapid strength loss occurred when the measured pulp viscosity dropped below 12 mPa∙s; overall strength properties showed no correlation to viscosity above the critical 12 mPa∙s value.


TAPPI Journal ◽  
2019 ◽  
Vol 18 (11) ◽  
pp. 631-638
Author(s):  
FREDERIC KREPLIN ◽  
HANS-JOACHIM PUTZ ◽  
SAMUEL SCHABEL

Paper for recycling is an important fiber source for the production of corrugated base paper. The change in production capacity toward more and more packaging papers affects the composition of paper for recycling and influences the paper quality. This research project investigated the influence of the multiple recycling of five different corrugated base papers (kraftliner, neutral sulfite semichemical [NSSC] fluting, corrugating medium, testliner 2, and testliner 3) on suspension and strength properties under laboratory conditions. The corrugated board base papers were repulped in a low consistency pulper and processed into Rapid-Köthen laboratory sheets. The sheets were then recycled up to 15 times in the same process. In each cycle, the suspension and the paper properties were recorded. In particular, the focus was on corrugated board-specific parameters, such as short-span compression test, ring crush test, corrugating medium test, and burst. The study results indicate how multiple recycling under laboratory conditions affects fiber and paper properties.


2016 ◽  
Vol 722 ◽  
pp. 343-350 ◽  
Author(s):  
Martin Vyšvařil ◽  
Tomáš Žižlavský ◽  
Patrik Bayer

Considering the requirement of numerous restoration work on historical buildings with dolomitic lime-based mortars, a research of the applicability and suitability of various types of plasters for repairing the historical plasters have been developed. This work presents the applicability of limestone aggregate and limestone fines to dolomitic lime-based mortars. The role of aggregates on the properties of dolomitic lime mortars was examined by comparing pure quartz sand and limestone aggregate and its quantity in the mortar. Limestone aggregate and limestone fines accelerated the carbonation reaction in the mortars, but the positive impact of limestone aggregates to strength properties of mortars was not observed. Mortars with limestone aggregate showed higher total porosity and water absorption than those with quartz aggregate. Similar results was obtained for mortars with limestone fines. It was found that limestone aggregate and limestone fines, used in this work, is not so suitable and applicable to the dolomitic lime-based mortar as to the aerial lime-based mortars.


2020 ◽  
pp. 451-457
Author(s):  
Aleksandr Yur'yevich Vititnev ◽  
Yuriy Davydovich Alashkevich ◽  
Natal'ya Geral'dovna Chistova ◽  
Roman Aleksandrovich Marchenko ◽  
Venera Nurullovna Matygullina

This paper presents the results of experimental studies of the physical and mechanical properties of wood-fiber boards of the wet production method when regulating the design and technological parameters of the grinding process. This allowed us to determine the influence of the working clearance between the grinding discs and the concentration of fibre mass with the subject to of quality change wood fiber after defibrator using the developed construction of the disc fibrillation action on the physico-mechanical properties of boards. As a result of the experiment, regression models were obtained that adequately describe the studied grinding process and allow predicting the values of physical and mechanical properties of the finished product depending on the established  parameters process. A comparative analysis of the size and quality characteristics of the fiber semi-finished product and its fractional composition when using a developed construction the disc of refiner fibrillation action and a traditional design used in industry is carried out. The preferential efficiency of the grinding process under the fibrillating effect the disc of refiner in comparison with the traditional construction disc of refiner is established. As a result, there is a significant improvement in the quality indicators of the fiber semi-finished product and its composition due to the formation and predominance in the total mass of long and thin, respectively, flexible fibrillated fibers with high tile-forming properties, which allows to increase the strength properties of the product (by 20–25%), without using binding resins.


2019 ◽  
Vol 484 (2) ◽  
pp. 220-223
Author(s):  
И. Ф. Юсупова

Baltic oil shales — kukersites were studied as an example of rocks with rock-forming organic matter (OM). The volumetric significance of their OM is shown (due to the low density) in the volume and thickness of the shale layers. A higher OM content is responsible for a lower strength of the shales relative to the carbonate rocks of the deposit. The variable OM contents and other heterogeneities of the shale layers (structure, nodules, etc.) are factors of the mosaic distribution of areas with different density–strength properties and, as a result, of uneven reduction of layers and their deformation in the case of OM loss (full or partial). It is concluded that the intercalation of kukersite and limestone layers leads to density and strength anisotropy of the shale deposit. Episodic loss of OM and carbonates by the shales is considered for the local areas of the deposit: here, kukersites contain only a terrigenous component with clasts of limestones, shales, and epigenetic sulfides. The loss of OM is explained by sulfate-reduction processes in the underground hydrosphere.


1986 ◽  
Vol 92 (6) ◽  
pp. 249-256 ◽  
Author(s):  
P. A. H. M. Bakker ◽  
J. G. Lamers ◽  
A. W. Bakker ◽  
J. D. Marugg ◽  
P. J. Weisbeek ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document