The genes encoding glycoside hydrolase family 6 and 7 cellulases from the brown-rot fungus Coniophora puteana

2009 ◽  
Vol 55 (5) ◽  
pp. 376-380 ◽  
Author(s):  
Taira Kajisa ◽  
Kiyohiko Igarashi ◽  
Masahiro Samejima
2002 ◽  
Vol 68 (11) ◽  
pp. 5765-5768 ◽  
Author(s):  
Amber Vanden Wymelenberg ◽  
Stuart Denman ◽  
Diane Dietrich ◽  
Jennifer Bassett ◽  
Xiaochun Yu ◽  
...  

ABSTRACT Phanerochaete chrysosporium cellulase genes were cloned and characterized. The cel61A product was structurally similar to fungal endoglucanases of glycoside hydrolase family 61, whereas the cel9A product revealed similarities to Thermobifida fusca Cel9A (E4), an enzyme with both endo- and exocellulase characteristics. The fungal Cel9A is apparently a membrane-bound protein, which is very unusual for microbial cellulases. Transcript levels of both genes were substantially higher in cellulose-grown cultures than in glucose-grown cultures. These results show that P. chrysosporium possesses a wide array of conventional and unconventional cellulase genes.


2002 ◽  
Vol 184 (15) ◽  
pp. 4124-4133 ◽  
Author(s):  
Kaveh Emami ◽  
Tibor Nagy ◽  
Carlos M. G. A. Fontes ◽  
Luis M. A. Ferreira ◽  
Harry J. Gilbert

ABSTRACT Pseudomonas cellulosa is a highly efficient xylan-degrading bacterium. Genes encoding five xylanases, and several accessory enzymes, which remove the various side chains that decorate the xylan backbone, have been isolated from the pseudomonad and characterized. The xylanase genes consist of xyn10A, xyn10B, xyn10C, xyn10D, and xyn11A, which encode Xyn10A, Xyn10B, Xyn10C, Xyn10D, and Xyn11A, respectively. In this study a sixth xylanase gene, xyn11B, was isolated which encodes a 357-residue modular enzyme, designated Xyn11B, comprising a glycoside hydrolase family 11 catalytic domain appended to a C-terminal X-14 module, a homologue of which binds to xylan. Localization studies showed that the two xylanases with glycoside hydrolase family (GH) 11 catalytic modules, Xyn11A and Xyn11B, are secreted into the culture medium, whereas Xyn10C is membrane bound. xyn10C, xyn10D, xyn11A, and xyn11B were all abundantly expressed when the bacterium was cultured on xylan or β-glucan but not on medium containing mannan, whereas glucose repressed transcription of these genes. Although all of the xylanase genes were induced by the same polysaccharides, temporal regulation of xyn11A and xyn11B was apparent on xylan-containing media. Transcription of xyn11A occurred earlier than transcription of xyn11B, which is consistent with the predicted mode of action of the encoded enzymes. Xyn11A, but not Xyn11B, exhibits xylan esterase activity, and the removal of acetate side chains is required for xylanases to hydrolyze the xylan backbone. A transposon mutant of P. cellulosa in which xyn11A and xyn11B were inactive displayed greatly reduced extracellular but normal cell-associated xylanase activity, and its growth rate on medium containing xylan was indistinguishable from wild-type P. cellulosa. Based on the data presented here, we propose a model for xylan degradation by P. cellulosa in which the GH11 enzymes convert decorated xylans into substituted xylooligosaccharides, which are then hydrolyzed to their constituent sugars by the combined action of cell-associated GH10 xylanases and side chain-cleaving enzymes.


2019 ◽  
Vol 85 (6) ◽  
Author(s):  
Masahiro Komeno ◽  
Honoka Hayamizu ◽  
Kiyotaka Fujita ◽  
Hisashi Ashida

ABSTRACT Arabinose-containing poly- or oligosaccharides are suitable carbohydrate sources for Bifidobacterium longum subsp. longum. However, their degradation pathways are poorly understood. In this study, we cloned and characterized the previously uncharacterized glycoside hydrolase family 43 (GH43) enzymes B. longum subsp. longum ArafC (BlArafC; encoded by BLLJ_1852) and B. longum subsp. longum ArafB (BlArafB; encoded by BLLJ_1853) from B. longum subsp. longum JCM 1217. Both enzymes exhibited α-l-arabinofuranosidase activity toward p-nitrophenyl-α-l-arabinofuranoside but no activity toward p-nitrophenyl-β-d-xylopyranoside. The specificities of the two enzymes for l-arabinofuranosyl linkages were different. BlArafC catalyzed the hydrolysis of α1,2- and α1,3-l-arabinofuranosyl linkages found on the side chains of both arabinan and arabinoxylan. It released l-arabinose 100 times faster from arabinan than from arabinoxylan but did not act on arabinogalactan. On the other hand, BlArafB catalyzed the hydrolysis of the α1,5-l-arabinofuranosyl linkage found on the arabinan backbone. It released l-arabinose from arabinan but not from arabinoxylan or arabinogalactan. Coincubation of BlArafC and BlArafB revealed that these two enzymes are able to degrade arabinan in a synergistic manner. Both enzyme activities were suppressed with EDTA treatment, suggesting that they require divalent metal ions. The GH43 domains of BlArafC and BlArafB are classified into GH43 subfamilies 27 and 22, respectively, but show very low similarity (less than 15% identity) with other biochemically characterized members in the corresponding subfamilies. The B. longum subsp. longum strain lacking the GH43 gene cluster that includes BLLJ_1850 to BLLJ_1853 did not grow in arabinan medium, suggesting that BlArafC and BlArafB are important for assimilation of arabinan. IMPORTANCE We identified two novel α-l-arabinofuranosidases, BlArafC and BlArafB, from B. longum subsp. longum JCM 1217, both of which are predicted to be extracellular membrane-bound enzymes. The former specifically acts on α1,2/3-l-arabinofuranosyl linkages, while the latter acts on the α1,5-l-arabinofuranosyl linkage. These enzymes cooperatively degrade arabinan and are required for the efficient growth of bifidobacteria in arabinan-containing medium. The genes encoding these enzymes are located side by side in a gene cluster involved in metabolic pathways for plant-derived polysaccharides, which may confer adaptability in adult intestines.


2018 ◽  
Author(s):  
Masahiro Komeno ◽  
Honoka Hayamizu ◽  
Kiyotaka Fujita ◽  
Hisashi Ashida

ABSTRACTArabinose-containing poly-or oligosaccharides are suitable carbohydrate sources for Bifidobacterium longum subsp. longum, though their degradation pathways are poorly understood. In this study, we found that the gene expression levels of bllj 1852 and bllj 1853 from B. longum subsp. longum JCM 1217 were enhanced in the presence of arabinan. Both genes encode previously uncharacterized glycoside hydrolase (GH) family 43 enzymes. Subsequently, we cloned those genes and characterized the recombinant enzymes expressed in Escherichia coli. Both enzymes exhibited α-L-arabinofuranosidase activity toward synthetic p-nitrophenyl glycoside, but the specificities for L-arabinofuranosyl linkages were different. BLLJ_1852 catalyzed the hydrolysis of α1,2- and α1,3-L-arabinofuranosyl linkages found in the side chains of arabinan and arabinoxylan. BLLJ_1852 released L-arabinose 100 times faster from arabinan than from arabinoxylan but did not act on arabinogalactan. BLLJ_1853 catalyzed the hydrolysis of α1,5-L-arabinofuranosyl linkages found on the arabinan backbone. BLLJ_1853 released L-arabinose from arabinan but not from arabinoxylan or arabinogalactan. Both enzyme activities were largely suppressed with EDTA treatment, suggesting that they require divalent metal ions. BLLJ_1852 was moderately activated in the presence of all divalent cations tested, whereas BLLJ_1853 activity was inhibited by Cu2+. The GH43 domains of BLLJ_1852 and BLLJ_1853 are classified into GH43 subfamilies 27 and 22, respectively, but hardly share similarity with other biochemically characterized members in the corresponding subfamilies.IMPORTANCEWe identified two novel α-L-arabinofuranosidases from B. longum subsp. longum JCM 1217 that act on different linkages in arabinan. These enzymes may be required for efficient degradation and assimilation of arabinan in the probiotic bifidobacteria. The genes encoding these enzymes are located side-by-side in a gene cluster involved in metabolic pathways for plant-derived polysaccharides, which may confer adaptability in adult intestines.


2021 ◽  
Vol 47 ◽  
pp. 107704
Author(s):  
Vladimír Puchart ◽  
Katarína Šuchová ◽  
Peter Biely

2021 ◽  
Vol 11 (9) ◽  
pp. 4048
Author(s):  
Javier A. Linares-Pastén ◽  
Lilja Björk Jonsdottir ◽  
Gudmundur O. Hreggvidsson ◽  
Olafur H. Fridjonsson ◽  
Hildegard Watzlawick ◽  
...  

The structures of glycoside hydrolase family 17 (GH17) catalytic modules from modular proteins in the ndvB loci in Pseudomonas aeruginosa (Glt1), P. putida (Glt3) and Bradyrhizobium diazoefficiens (previously B. japonicum) (Glt20) were modeled to shed light on reported differences between these homologous transglycosylases concerning substrate size, preferred cleavage site (from reducing end (Glt20: DP2 product) or non-reducing end (Glt1, Glt3: DP4 products)), branching (Glt20) and linkage formed (1,3-linkage in Glt1, Glt3 and 1,6-linkage in Glt20). Hybrid models were built and stability of the resulting TIM-barrel structures was supported by molecular dynamics simulations. Catalytic amino acids were identified by superimposition of GH17 structures, and function was verified by mutagenesis using Glt20 as template (i.e., E120 and E209). Ligand docking revealed six putative subsites (−4, −3, −2, −1, +1 and +2), and the conserved interacting residues suggest substrate binding in the same orientation in all three transglycosylases, despite release of the donor oligosaccharide product from either the reducing (Glt20) or non-reducing end (Glt1, Gl3). Subsites +1 and +2 are most conserved and the difference in release is likely due to changes in loop structures, leading to loss of hydrogen bonds in Glt20. Substrate docking in Glt20 indicate that presence of covalently bound donor in glycone subsites −4 to −1 creates space to accommodate acceptor oligosaccharide in alternative subsites in the catalytic cleft, promoting a branching point and formation of a 1,6-linkage. The minimum donor size of DP5, can be explained assuming preferred binding of DP4 substrates in subsite −4 to −1, preventing catalysis.


Sign in / Sign up

Export Citation Format

Share Document