Evaluating European directives impacts on residential buildings' energy performance: a case study of Spanish detached houses

Author(s):  
Juan Carlos Ríos-Fernández ◽  
Juan M. González-Caballín ◽  
Andrés Meana-Fernández ◽  
María José Suárez López ◽  
Antonio José Gutiérrez-Trashorras
Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1049
Author(s):  
Zhang Deng ◽  
Yixing Chen ◽  
Xiao Pan ◽  
Zhiwen Peng ◽  
Jingjing Yang

Urban building energy modeling (UBEM) is arousing interest in building energy modeling, which requires a large building dataset as an input. Building use is a critical parameter to infer archetype buildings for UBEM. This paper presented a case study to determine building use for city-scale buildings by integrating the Geographic Information System (GIS) based point-of-interest (POI) and community boundary datasets. A total of 68,966 building footprints, 281,767 POI data, and 3367 community boundaries were collected for Changsha, China. The primary building use was determined when a building was inside a community boundary (i.e., hospital or residential boundary) or the building contained POI data with main attributes (i.e., hotel or office building). Clustering analysis was used to divide buildings into sub-types for better energy performance evaluation. The method successfully identified building uses for 47,428 buildings among 68,966 building footprints, including 34,401 residential buildings, 1039 office buildings, 141 shopping malls, and 932 hotels. A validation process was carried out for 7895 buildings in the downtown area, which showed an overall accuracy rate of 86%. A UBEM case study for 243 office buildings in the downtown area was developed with the information identified from the POI and community boundary datasets. The proposed building use determination method can be easily applied to other cities. We will integrate the historical aerial imagery to determine the year of construction for a large scale of buildings in the future.


Energies ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 587 ◽  
Author(s):  
İdil Ayçam ◽  
Sevilay Akalp ◽  
Leyla Senem Görgülü

Conventional energy use has brought environmental problems such as global warming and accelerated efforts to reduce energy consumption in many areas, particularly in the housing sector. For this purpose, bioclimatic design principles and vernacular architecture parameters have started to be examined in residential buildings nowadays. Thus, the demand for less energy-consuming houses has started to increase. In this study, we aimed to specify the significance of traditional architectural parameters for houses in the hot-dry climatic region of Diyarbakır, Turkey. Within the scope of the study, a case was based on the urban fabric of the traditional houses in Historical Diyarbakir Suriçi-Old Town settlement and the Şilbe Mass Housing Area was discussed. The courtyard types, settlement patterns, and street texture of traditional Diyarbakır houses were modeled by using DesignBuilder energy simulation program for the case study. Annual heating, cooling, and total energy loads were calculated, and their thermal performances were compared. The aim is to create a less energy-consuming and sustainable environment with the adaptation of traditional building form-street texture to today’s housing sector. Development of a settlement model, which is based on traditional houses’ bioclimatic design for hot-dry region, was intended to be applied in the modern housing sector of Turkey. Moreover, adapting local forms, urban texture, and settlement patterns to today has significant potential for sustainable architecture and energy-efficient buildings. According to this study, the optimum form and layout of traditional houses, which are one of the climate balanced building designs, provide annual energy savings if integrated and designed in today’s building construction. As a result of this study, if the passive design alternatives such as building shape, layout, and orientation were developed in the first stage of the design, energy efficient building design would be possible. The study is important for the continuation of traditional sustainable design.


2011 ◽  
Vol 43 (12) ◽  
pp. 3400-3409 ◽  
Author(s):  
Elena G. Dascalaki ◽  
Kalliopi G. Droutsa ◽  
Constantinos A. Balaras ◽  
Simon Kontoyiannidis

2021 ◽  
Vol 16 (3) ◽  
pp. 87-108
Author(s):  
Nadeeka Jayaweera ◽  
Upendra Rajapaksha ◽  
Inoka Manthilake

ABSTRACT This study examines the daylight and energy performance of 27 external shading scenarios in a high-rise residential building in the urban tropics. The cooling energy, daytime lighting energy and the spatial daylight autonomy (sDA) of the building model were simulated in Rhino3D and Grasshopper simulation software. The best performance scenario (vertical and horizontal shading on the twentieth floor, horizontal shading only for the eleventh floor and no shading for the second floor) satisfied 75 sDA(300lx|50) with corresponding annual enery performance of 16%–20% in the cardinal directions. The baseline scenario, which is the current practice of providing balconies on all floors, reduced daylight to less than 75 sDA on the eleventh and second floor, even though it had higher annual enery performance (19%–24%) than the best performance scenario. Application of the design principles to a case study indicated that 58% of the spaces had over 75 sDA for both Baseline and Best performance scenarios, while an increase in enery performance of 1%–3% was found in the Best performance scenario compared to the Baseline.


2016 ◽  
Vol 841 ◽  
pp. 110-115
Author(s):  
Gheorge Badea ◽  
Raluca Andreea Felseghi ◽  
Simona Răboaca ◽  
Ioan Aşchilean ◽  
Andrei Bolboacă ◽  
...  

For a good approach to new challenges recommended by EU Energy Performance of Buildings Directive, nearly Zero Energy Buildings (nZEB) concept for new residential buildings is conceived in order to drastically improving the overall performance of classical buildings, especially in terms of energy use, production and CO2 equivalent (CO2e) emissions. This paper shows the results of the case study where was investigated energy, economic and environmental performances of hybrid solar and wind system for neutral in terms of climate parameters nZEB. The aim of this study was to demonstrate the capability and feasibility of RES hybrid technology for the energy supply of Romanian nZEB, and also, was to establish new general criteria with the goal to determinate the optimal design solution and providing general principles for green energy production. The main results reveal that Romania has a potential for green energy to implement the new concept nZEB and the global technical optimum of a hybrid system for nZEB is determined by the optimal interaction between the design parameters. The hybrid solar and wind electric systems are functioned in operational stand alone mode, its are supplied 100% by energy from RES and embedded CO2 emissions are decreased by over 50% compared to the classics systems.


2021 ◽  
Author(s):  
Kaitlin Paige Carroll

This study assesses the performance gap between actual energy performance and desired energy performance outcomes for a case study of 19 LEED-certified multi-unit residential buildings in the Greater Toronto Area. The study examines 1) how accurately design-stage energy modelling predicts actual energy use, 2) how much variation of energy performance can be seen between buildings of the same level of certification, and 3) the key contributing factors of this performance gap. Using EUI as the basis of comparison, trend analysis was carried out. It was determined that a performance gap between modelled and actual building energy use does exist. When compared to a larger sample of existing buildings, the case study buildings show no real improvement, on average. Regression models revealed no strong correlation between LEED Level or LEED EAc1 credits and reduced EUIs.


Energies ◽  
2018 ◽  
Vol 11 (4) ◽  
pp. 704 ◽  
Author(s):  
Jesús Feijó-Muñoz ◽  
Irene Poza-Casado ◽  
Roberto Alonso González-Lezcano ◽  
Cristina Pardal ◽  
Víctor Echarri ◽  
...  

Air leakage and its impact on the energy performance of dwellings has been broadly studied in countries with cold climates in Europe, US, and Canada. However, there is a lack of knowledge in this field in Mediterranean countries. Current Spanish building regulations establish ventilation rates based on ideal airtight envelopes, causing problems of over-ventilation and substantial energy losses. The aim of this paper is to develop a methodology that allows the characterization of the envelope of the housing stock in Spain in order to adjust ventilation rates taking into consideration air leakage. A methodology that is easily applicable to other countries that consider studying the airtightness of the envelope and its energetic behaviour improvement is proposed. A statistical sampling method has been established to determine the dwellings to be tested, considering relevant variables concerning airtightness: climate zone, year of construction, and typology. The air leakage rate is determined using a standardized building pressurization technique according to European Standard EN 13829. A representative case study has been presented as an example of the implementation of the designed methodology and results are compared to preliminary values obtained from the database.


Sign in / Sign up

Export Citation Format

Share Document