scholarly journals Examining the performance gap in LEED certified murbs

Author(s):  
Kaitlin Paige Carroll

This study assesses the performance gap between actual energy performance and desired energy performance outcomes for a case study of 19 LEED-certified multi-unit residential buildings in the Greater Toronto Area. The study examines 1) how accurately design-stage energy modelling predicts actual energy use, 2) how much variation of energy performance can be seen between buildings of the same level of certification, and 3) the key contributing factors of this performance gap. Using EUI as the basis of comparison, trend analysis was carried out. It was determined that a performance gap between modelled and actual building energy use does exist. When compared to a larger sample of existing buildings, the case study buildings show no real improvement, on average. Regression models revealed no strong correlation between LEED Level or LEED EAc1 credits and reduced EUIs.

2021 ◽  
Author(s):  
Kaitlin Paige Carroll

This study assesses the performance gap between actual energy performance and desired energy performance outcomes for a case study of 19 LEED-certified multi-unit residential buildings in the Greater Toronto Area. The study examines 1) how accurately design-stage energy modelling predicts actual energy use, 2) how much variation of energy performance can be seen between buildings of the same level of certification, and 3) the key contributing factors of this performance gap. Using EUI as the basis of comparison, trend analysis was carried out. It was determined that a performance gap between modelled and actual building energy use does exist. When compared to a larger sample of existing buildings, the case study buildings show no real improvement, on average. Regression models revealed no strong correlation between LEED Level or LEED EAc1 credits and reduced EUIs.


Author(s):  
David Thompson ◽  
Esfand Burman ◽  
Dejan Mumovic ◽  
Mike Davies

Energy use in buildings accounts for one-third of the overall global energy consumption and total building floor area continues to increase each year as new developments are constructed and delivered. If stringent climate goals are to be met, these buildings will need to consume less energy and emit less carbon. However, design intentions for energy efficient buildings are not always met in practice. This performance gap between calculated and measured energy use in buildings threatens the progress necessary to meet these energy targets. The aim of this paper is to identify the factors that contribute to the performance gap and propose solutions for reducing the gap in practice. A quantitative and qualitative analysis of two research programmes completed in the past few years was utilized for an in-depth look at the performance of around 50 non-domestic buildings in the United Kingdom. While no direct links were found between any one variable and the performance gap, several correlations exist between contributing factors indicating a complex, entangled web of interrelated problems. The multitude of the variables involved presents a formidable challenge in finding practical solutions. However, the results indicate that the combination of the ventilation strategy of a building and the building services control strategy during partial occupancy is a key determinant of the performance gap. A more straightforward procurement approach with clearly delineated targets and responsibilities, along with advanced and seasonal commissioning instituted at the beginning of a project and implemented after building completion can also be very effective in reducing the gap. Finally, mandatory requirements or an appropriate system of incentives for monitoring and disclosure of performance data can help identify many of the underlying issues affecting performance in-use and untangle some of the web of complex issues across the building sector. Awareness of the performance gap and knowledge of the factors contributing to its impact on the building industry is important for all stakeholders involved in the design, construction, operation and occupation of non-domestic buildings. Understanding potential solutions to mitigate these risks may help to reduce the prevalence and magnitude of the performance gap.


2016 ◽  
Vol 841 ◽  
pp. 110-115
Author(s):  
Gheorge Badea ◽  
Raluca Andreea Felseghi ◽  
Simona Răboaca ◽  
Ioan Aşchilean ◽  
Andrei Bolboacă ◽  
...  

For a good approach to new challenges recommended by EU Energy Performance of Buildings Directive, nearly Zero Energy Buildings (nZEB) concept for new residential buildings is conceived in order to drastically improving the overall performance of classical buildings, especially in terms of energy use, production and CO2 equivalent (CO2e) emissions. This paper shows the results of the case study where was investigated energy, economic and environmental performances of hybrid solar and wind system for neutral in terms of climate parameters nZEB. The aim of this study was to demonstrate the capability and feasibility of RES hybrid technology for the energy supply of Romanian nZEB, and also, was to establish new general criteria with the goal to determinate the optimal design solution and providing general principles for green energy production. The main results reveal that Romania has a potential for green energy to implement the new concept nZEB and the global technical optimum of a hybrid system for nZEB is determined by the optimal interaction between the design parameters. The hybrid solar and wind electric systems are functioned in operational stand alone mode, its are supplied 100% by energy from RES and embedded CO2 emissions are decreased by over 50% compared to the classics systems.


Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1211
Author(s):  
Francesco Zaccaro ◽  
John Richard Littlewood ◽  
Carolyn Hayles

Calculating Repeating Thermal Bridges (RTBs) for Timber Frame (TF) closed panels that could occur in Offsite Manufactured (OSM) Modern Methods of Construction (MMC), such as exterior walls for nearly-to-zero operational energy dwellings to be constructed in Wales, United Kingdom (UK) is discussed in this paper. Detailed calculations for linear RTBs due to the TF components are often neglected when evaluating thermal transmittance (known as U-values hereafter). The use of standard TF fractions does not allow the designer to perceive their detrimental impact on RTBs and consequent U-values for exterior walls. With the increase of the thermal performance of exterior walls and as such lower U-values due to ever-tightening Building Regulations, specifically related to the energy use and carbon emissions from the space heating of dwellings, then the impacts of RTBs requires more investigation. By not calculating the potential of linear RTB at the design stage could lead to a performance gap where assumed U-values for exterior walls differ from manufacture to onsite. A TF detail from the Welsh manufacture has been chosen as a case study, to develop and apply a methodology using manufacturing drawings to evaluate TF fraction and their effect on the thermal performance.


2021 ◽  
Vol 13 (4) ◽  
pp. 1595
Author(s):  
Valeria Todeschi ◽  
Roberto Boghetti ◽  
Jérôme H. Kämpf ◽  
Guglielmina Mutani

Building energy-use models and tools can simulate and represent the distribution of energy consumption of buildings located in an urban area. The aim of these models is to simulate the energy performance of buildings at multiple temporal and spatial scales, taking into account both the building shape and the surrounding urban context. This paper investigates existing models by simulating the hourly space heating consumption of residential buildings in an urban environment. Existing bottom-up urban-energy models were applied to the city of Fribourg in order to evaluate the accuracy and flexibility of energy simulations. Two common energy-use models—a machine learning model and a GIS-based engineering model—were compared and evaluated against anonymized monitoring data. The study shows that the simulations were quite precise with an annual mean absolute percentage error of 12.8 and 19.3% for the machine learning and the GIS-based engineering model, respectively, on residential buildings built in different periods of construction. Moreover, a sensitivity analysis using the Morris method was carried out on the GIS-based engineering model in order to assess the impact of input variables on space heating consumption and to identify possible optimization opportunities of the existing model.


Author(s):  
Nishesh Jain ◽  
Esfand Burman ◽  
Dejan Mumovic ◽  
Mike Davies

To manage the concerns regarding the energy performance gap in buildings, a structured and longitudinal performance assessment of buildings, covering design through to operation, is necessary. Modelling can form an integral part of this process by ensuring that a good practice design stage modelling is followed by an ongoing evaluation of operational stage performance using a robust calibration protocol. In this paper, we demonstrate, via a case study of an office building, how a good practice design stage model can be fine-tuned for operational stage using a new framework that helps validate the causes for deviations of actual performance from design intents. This paper maps the modelling based process of tracking building performance from design to operation, identifying the various types of performance gaps. Further, during the operational stage, the framework provides a systematic way to separate the effect of (i) operating conditions that are driven by the building’s actual function and occupancy as compared with the design assumptions, and (ii) the effect of potential technical issues that cause underperformance. As the identification of issues is based on energy modelling, the process requires use of advanced and well-documented simulation tools. The paper concludes with providing an outline of the software platform requirements needed to generate robust design models and their calibration for operational performance assessments. Practical application The paper’s findings are a useful guide for building industry professionals to manage the performance gap with appropriate accuracy through a robust methodology in an easy to use workflow. The methodological framework to analyse building energy performance in-use links best practice design stage modelling guidance with a robust operational stage investigation. It helps designers, contractors, building managers and other stakeholders with an understanding of procedures to follow to undertake an effective measurement and verification exercise.


2021 ◽  
Vol 1 ◽  
pp. 3279-3288
Author(s):  
Maria Hein ◽  
Darren Anthony Jones ◽  
Claudia Margot Eckert

AbstractEnergy consumed in buildings is a main contributor to CO2 emissions, there is therefore a need to improve the energy performance of buildings, particularly commercial buildings whereby building service systems are often substantially over-designed due to the application of excess margins during the design process.The cooling system of an NHS Hospital was studied and modelled in order to identify if the system was overdesigned, and to quantify the oversizing impact on the system operational and embodied carbon footprints. Looking at the operational energy use and environmental performance of the current system as well as an alternative optimised system through appropriate modelling and calculation, the case study results indicate significant environmental impacts are caused by the oversizing of cooling system.The study also established that it is currently more difficult to obtain an estimate of the embodied carbon footprint of building service systems. It is therefore the responsibility of the machine builders to provide information and data relating to the embodied carbon of their products, which in the longer term, this is likely to become a standard industry requirement.


Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1049
Author(s):  
Zhang Deng ◽  
Yixing Chen ◽  
Xiao Pan ◽  
Zhiwen Peng ◽  
Jingjing Yang

Urban building energy modeling (UBEM) is arousing interest in building energy modeling, which requires a large building dataset as an input. Building use is a critical parameter to infer archetype buildings for UBEM. This paper presented a case study to determine building use for city-scale buildings by integrating the Geographic Information System (GIS) based point-of-interest (POI) and community boundary datasets. A total of 68,966 building footprints, 281,767 POI data, and 3367 community boundaries were collected for Changsha, China. The primary building use was determined when a building was inside a community boundary (i.e., hospital or residential boundary) or the building contained POI data with main attributes (i.e., hotel or office building). Clustering analysis was used to divide buildings into sub-types for better energy performance evaluation. The method successfully identified building uses for 47,428 buildings among 68,966 building footprints, including 34,401 residential buildings, 1039 office buildings, 141 shopping malls, and 932 hotels. A validation process was carried out for 7895 buildings in the downtown area, which showed an overall accuracy rate of 86%. A UBEM case study for 243 office buildings in the downtown area was developed with the information identified from the POI and community boundary datasets. The proposed building use determination method can be easily applied to other cities. We will integrate the historical aerial imagery to determine the year of construction for a large scale of buildings in the future.


2019 ◽  
Vol 111 ◽  
pp. 03035 ◽  
Author(s):  
Raimo Simson ◽  
Endrik Arumägi ◽  
Kalle Kuusk ◽  
Jarek Kurnitski

In the member states of the European Union (EU), nearly-Zero Energy Buildings (nZEB) are becoming mandatory building practice in 2021. It is stated, that nZEB should be cost-optimal and the energy performance levels should be re-defined after every five years. We conducted cost-optimality analyses for two detached houses, one terraced house and one apartment building in Estonia. The analysis consisted on actual construction cost data collection based on bids of variable solutions for building envelope, air tightness, windows, heat supply systems and local renewable energy production options. For energy performance analysis we used dynamic simulation software IDA-ICE. To assess cost-effectiveness, we used Net Present Value (NPV) calculations with the assessment period of 30 years. The results for cost-optimal energy performance level for detached house with heated space of ~100 m2 was 79 kWh/(m2 a), for the larger house (~200 m2) 87 kWh/(m2 a), for terraced house with heated space of ~600 m2 71 kWh/(m2 a) and for the apartment building 103 kWh/(m2 a) of primary energy including all energy use with domestic appliances. Thus, the decrease in cost-optimal level in a five-year period was ~60% for the detached house and ~40% for the apartment building, corresponding to a shift in two EPC classes.


Sign in / Sign up

Export Citation Format

Share Document