Topical photodynamic therapy using transfersomal aluminum phthalocyanine tetrasulfonate: in vitro and in vivo study

2013 ◽  
Vol 28 (5) ◽  
pp. 1353-1361 ◽  
Author(s):  
Kawser Kassab ◽  
Doaa Abd El Fadeel ◽  
Maha Fadel
2012 ◽  
Author(s):  
João Alves dos Reis Júnior ◽  
Patrícia Nascimento de Assis ◽  
Garde^nia Matos Paraguassú ◽  
Isabele Cardoso Vieira de de Castro ◽  
Renan Ferreira Trindade ◽  
...  

2011 ◽  
Vol 29 (3) ◽  
pp. 155-160 ◽  
Author(s):  
Ruifeng Ge ◽  
Jin-Chul Ahn ◽  
Jang-In Shin ◽  
Chan Woong Bahk ◽  
Peijie He ◽  
...  

2014 ◽  
Vol 32 (1) ◽  
pp. 54-57 ◽  
Author(s):  
Yolanda Gilaberte ◽  
Carmen Aspiroz ◽  
M. Carmen Alejandre ◽  
Elena Andres-Ciriano ◽  
Blanca Fortuño ◽  
...  

Pharmaceutics ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 196
Author(s):  
Mosar Corrêa Rodrigues ◽  
Wellington Tavares de Sousa Júnior ◽  
Thayná Mundim ◽  
Camilla Lepesqueur Costa Vale ◽  
Jaqueline Vaz de Oliveira ◽  
...  

Photodynamic therapy (PDT) has been clinically employed to treat mainly superficial cancer, such as basal cell carcinoma. This approach can eliminate tumors by direct cytotoxicity, tumor ischemia, or by triggering an immune response against tumor cells. Among the immune-related mechanisms of PDT, the induction of immunogenic cell death (ICD) in target cells is to be cited. ICD is an apoptosis modality distinguished by the emission of damage-associated molecular patterns (DAMP). Therefore, this study aimed to analyze the immunogenicity of CT26 and 4T1 treated with PDT mediated by aluminum-phthalocyanine in nanoemulsion (PDT-AlPc-NE). Different PDT-AlPc-NE protocols with varying doses of energy and AlPc concentrations were tested. The death mechanism and the emission of DAMPs–CRT, HSP70, HSP90, HMGB1, and IL-1β–were analyzed in cells treated in vitro with PDT. Then, the immunogenicity of these cells was assessed in an in vivo vaccination-challenge model with BALB/c mice. CT26 and 4T1 cells treated in vitro with PDT mediated by AlPc IC50 and a light dose of 25 J/cm² exhibited the hallmarks of ICD, i.e., these cells died by apoptosis and exposed DAMPs. Mice injected with these IC50 PDT-treated cells showed, in comparison to the control, increased resistance to the development of tumors in a subsequent challenge with viable cells. Mice injected with 4T1 and CT26 cells treated with higher or lower concentrations of photosensitizer and light doses exhibited a significantly lower resistance to tumor development than those injected with IC50 PDT-treated cells. The results presented in this study suggest that both the photosensitizer concentration and light dose affect the immunogenicity of the PDT-treated cells. This event can affect the therapy outcomes in vivo.


2020 ◽  
Vol 21 (15) ◽  
pp. 1688-1698
Author(s):  
Germeen N.S. Girgis

Purpose: The work was performed to investigate the feasibility of preparing ocular inserts loaded with Poly-ε-Caprolactone (PCL) nanoparticles as a sustained ocular delivery system. Methods: First, Atorvastatin Calcium-Poly-ε-Caprolactone (ATC-PCL) nanoparticles were prepared and characterized. Then, the optimized nanoparticles were loaded within inserts formulated with Methylcellulose (MC) and Polyvinyl Alcohol (PVA) by a solvent casting technique and evaluated physically, for in-vitro drug release profile. Finally, an in-vivo study was performed on the selected formulation to prove non-irritability and sustained ocular anti-inflammatory efficacy compared with free drug-loaded ocuserts. Results: The results revealed (ATC-PCL) nanoparticles prepared with 0.5% pluronic F127 were optimized with 181.72±3.6 nm particle size, 0.12±0.02 (PDI) analysis, -27.4± 0.69 mV zeta potential and 62.41%±4.7% entrapment efficiency. Nanoparticles loaded ocuserts manifested compatibility between drug and formulation polymers. Moreover, formulations complied with average weight 0.055±0.002 to 0.143±0.023 mg, and accepted pH. ATC-PCL nanoparticles loaded inserts prepared by 5% MC showed more sustained, prolonged in-vitro release over 24h. In-vivo study emphasized non-irritability, ocular anti-inflammatory effectiveness represented by smaller lid closure scores, and statistically significant lowering in PMN count after 3h. Conclusion: These findings proposed a possibly simple, new and affordable price technique to prepare promising (ATC-PCL) nanoparticles loaded inserts to achieve sustained release with prolonged antiinflammatory efficacy.


2019 ◽  
Vol 120 (6) ◽  
pp. 9747-9757 ◽  
Author(s):  
Jiayou Tang ◽  
Linhe Lu ◽  
Yang Liu ◽  
Jipeng Ma ◽  
Lifang Yang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document