scholarly journals On the Green function of an orthotropic clamped plate in a half-plane

Author(s):  
Norbert Ortner ◽  
Peter Wagner

AbstractFirst, we calculate, in a heuristic manner, the Green function of an orthotropic plate in a half-plane which is clamped along the boundary. We then justify the solution and generalize our approach to operators of the form $$(Q(\partial ')-a^2\partial _n^2)(Q(\partial ')-b^2\partial _n^2)$$ ( Q ( ∂ ′ ) - a 2 ∂ n 2 ) ( Q ( ∂ ′ ) - b 2 ∂ n 2 ) (where $$\partial '=(\partial _1,\dots ,\partial _{n-1})$$ ∂ ′ = ( ∂ 1 , ⋯ , ∂ n - 1 ) and $$a>0,b>0,a\ne b)$$ a > 0 , b > 0 , a ≠ b ) with respect to Dirichlet boundary conditions at $$x_n=0.$$ x n = 0 . The Green function $$G_\xi $$ G ξ is represented by a linear combination of fundamental solutions $$E^c$$ E c of $$Q(\partial ')(Q(\partial ')-c^2\partial _n^2),$$ Q ( ∂ ′ ) ( Q ( ∂ ′ ) - c 2 ∂ n 2 ) , $$c\in \{a,b\},$$ c ∈ { a , b } , that are shifted to the source point $$\xi ,$$ ξ , to the mirror point $$-\xi ,$$ - ξ , and to the two additional points $$-\frac{a}{b}\xi $$ - a b ξ and $$-\frac{b}{a}\xi ,$$ - b a ξ , respectively.

2011 ◽  
Vol 55 (1) ◽  
pp. 155-166 ◽  
Author(s):  
Marius Ghergu

AbstractWe study the biharmonic equation Δ2u=u−α, 0 < α < 1, in a smooth and bounded domain Ω ⊂ ℝn,n≥ 2, subject to Dirichlet boundary conditions. Under some suitable assumptions on Ω related to the positivity of the Green function for the biharmonic operator, we prove the existence and uniqueness of a solution.


2008 ◽  
Vol 06 (02) ◽  
pp. 121-150 ◽  
Author(s):  
IMED BACHAR ◽  
HABIB MÂAGLI ◽  
NOUREDDINE ZEDDINI

Let [Formula: see text] be the Green function of (-Δ)m, m ≥ 1, on the complementary D of the unit closed ball in ℝn, n ≥ 2, with Dirichlet boundary conditions [Formula: see text], 0 ≤ j ≤ m - 1. We establish some estimates on [Formula: see text] including the 3G-Inequality given by (1.3). Next, we introduce a polyharmonic Kato class of functions [Formula: see text] and we exploit the properties of this class to study the existence of positive solutions of some polyharmonic nonlinear elliptic problems.


2003 ◽  
Vol 2003 (12) ◽  
pp. 715-741 ◽  
Author(s):  
Imed Bachar ◽  
Habib Màagli ◽  
Syrine Masmoudi ◽  
Malek Zribi

We establish a new form of the3Gtheorem for polyharmonic Green function on the unit ball ofℝn(n≥2)corresponding to zero Dirichlet boundary conditions. This enables us to introduce a new class of functionsKm,ncontaining properly the classical Kato classKn. We exploit properties of functions belonging toKm,nto prove an infinite existence result of singular positive solutions for nonlinear elliptic equation of order2m.


Author(s):  
Elvise Berchio ◽  
Alessio Falocchi

AbstractIt is well known that for higher order elliptic equations, the positivity preserving property (PPP) may fail. In striking contrast to what happens under Dirichlet boundary conditions, we prove that the PPP holds for the biharmonic operator on rectangular domains under partially hinged boundary conditions, i.e., nonnegative loads yield positive solutions. The result follows by fine estimates of the Fourier expansion of the corresponding Green function.


2006 ◽  
Vol 2006 ◽  
pp. 1-14 ◽  
Author(s):  
Sonia Ben Othman

This paper deals with a class of singular nonlinear polyharmonic equations on the unit ballBinℝn (n≥2)where the combined effects of a singular and a sublinear term allow us by using the Schauder fixed point theorem to establish an existence result for the following problem:(−Δ)mu=φ(⋅,u)+ψ(⋅,u)inB(in the sense of distributions),u>0,lim⁡|x|→1u(x)/(1−|x|)m−1=0. Our approach is based on estimates for the polyharmonic Green function onBwith zero Dirichlet boundary conditions.


2020 ◽  
Vol 23 (3) ◽  
pp. 787-798
Author(s):  
Zhanbing Bai ◽  
Sujing Sun ◽  
Zengji Du ◽  
YangQuan Chen

AbstractA class of two-point boundary value problem whose highest-order term is a Caputo fractional derivative of order α ∈ (1, 2] with a convection term is considered. Its boundary conditions are of Robin type including the Dirichlet boundary conditions as a special case. An explicit formula for the associated Green function is obtained in terms of two-parameter Mittag-Leffler functions. This work improves Meng and Stynes’ work [9] in three aspects. Firstly, the Green function is constructed by the use of the Laplace transform. This method may be more straightforward and easy to be generalized to solving other problems. Secondly, the monotonicity of a function is proven using monotone definition rather than using its derivative. Thirdly, a direct proof of the necessity of the positive property of Green function is given so that we can avoid the difficulty of construction any counter-example.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Eva Llabrés

Abstract We find the most general solution to Chern-Simons AdS3 gravity in Fefferman-Graham gauge. The connections are equivalent to geometries that have a non-trivial curved boundary, characterized by a 2-dimensional vielbein and a spin connection. We define a variational principle for Dirichlet boundary conditions and find the boundary stress tensor in the Chern-Simons formalism. Using this variational principle as the departure point, we show how to treat other choices of boundary conditions in this formalism, such as, including the mixed boundary conditions corresponding to a $$ T\overline{T} $$ T T ¯ -deformation.


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Adrien Fiorucci ◽  
Romain Ruzziconi

Abstract The gravitational charge algebra of generic asymptotically locally (A)dS spacetimes is derived in n dimensions. The analysis is performed in the Starobinsky/Fefferman-Graham gauge, without assuming any further boundary condition than the minimal falloffs for conformal compactification. In particular, the boundary structure is allowed to fluctuate and plays the role of source yielding some symplectic flux at the boundary. Using the holographic renormalization procedure, the divergences are removed from the symplectic structure, which leads to finite expressions. The charges associated with boundary diffeomorphisms are generically non-vanishing, non-integrable and not conserved, while those associated with boundary Weyl rescalings are non-vanishing only in odd dimensions due to the presence of Weyl anomalies in the dual theory. The charge algebra exhibits a field-dependent 2-cocycle in odd dimensions. When the general framework is restricted to three-dimensional asymptotically AdS spacetimes with Dirichlet boundary conditions, the 2-cocycle reduces to the Brown-Henneaux central extension. The analysis is also specified to leaky boundary conditions in asymptotically locally (A)dS spacetimes that lead to the Λ-BMS asymptotic symmetry group. In the flat limit, the latter contracts into the BMS group in n dimensions.


2021 ◽  
pp. 104123
Author(s):  
Firdous A. Shah ◽  
Mohd Irfan ◽  
Kottakkaran S. Nisar ◽  
R.T. Matoog ◽  
Emad E. Mahmoud

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Robert Stegliński

Abstract The aim of this paper is to extend results from [A. Cañada, J. A. Montero and S. Villegas, Lyapunov inequalities for partial differential equations, J. Funct. Anal. 237 (2006), 1, 176–193] about Lyapunov-type inequalities for linear partial differential equations to nonlinear partial differential equations with 𝑝-Laplacian with zero Neumann or Dirichlet boundary conditions.


Sign in / Sign up

Export Citation Format

Share Document