Near-surface flow structure over wind-generated water waves, part II: characteristics of separated and non-separated flows

2010 ◽  
Vol 61 (1) ◽  
pp. 143-154 ◽  
Author(s):  
Nasiruddin Shaikh ◽  
Kamran Siddiqui
Author(s):  
Xiaoxia Hu ◽  
Ali Dolatabadi ◽  
Kamran Siddiqul

We report on a numerical study conducted to investigate the near-surface flow beneath clean and contaminated small-scale wind-driven water surfaces. The numerical model is validated in terms of the velocity and surface wave characteristics. A good agreement is observed between the experimental and numerical values. The results from the numerical model show that the mean velocity in the near-surface region is 25–50% higher beneath the contaminated surface as compared to the clear surface. The present trend is also in agreement with the previous experimental observations.


Geophysics ◽  
1951 ◽  
Vol 16 (1) ◽  
pp. 63-80 ◽  
Author(s):  
Milton B. Dobrin

A non‐mathematical summary is presented of the published theories and observations on dispersion, i.e., variation of velocity with frequency, in surface waves from earthquakes and in waterborne waves from shallow‐water explosions. Two further instances are cited in which dispersion theory has been used in analyzing seismic data. In the seismic refraction survey of Bikini Atoll, information on the first 400 feet of sediments below the lagoon bottom could not be obtained from ground wave first arrival times because shot‐detector distances were too great. Dispersion in the water waves, however, gave data on speed variations in the bottom sediments which made possible inferences on the recent geological history of the atoll. Recent systematic observations on ground roll from explosions in shot holes have shown dispersion in the surface waves which is similar in many ways to that observed in Rayleigh waves from distant earthquakes. Classical wave theory attributes Rayleigh wave dispersion to the modification of the waves by a surface layer. In the case of earthquakes, this layer is the earth’s crust. In the case of waves from shot‐holes, it is the low‐speed weathered zone. A comparison of observed ground roll dispersion with theory shows qualitative agreement, but it brings out discrepancies attributable to the fact that neither the theory for liquids nor for conventional solids applies exactly to unconsolidated near‐surface rocks. Additional experimental and theoretical study of this type of surface wave dispersion may provide useful information on the properties of the surface zone and add to our knowledge of the mechanism by which ground roll is generated in seismic shooting.


Author(s):  
M. Béhaegel ◽  
P. Sailhac ◽  
G. Marquis ◽  
E. Falgas ◽  
J. Ledo

Author(s):  
Motohiko Umeyama

To investigate changes in the instability of Stokes waves prior to wave breaking in shallow water, pressure data were recorded vertically over the entire water depth, except in the near-surface layer (from 0 cm to −3 cm), in a recirculating channel. In addition, we checked the pressure asymmetry under several conditions. The phase-averaged dynamic-pressure values for the wave–current motion appear to increase compared with those for the wave-alone motion; however, they scatter in the experimental range. The measured vertical distributions of the dynamic pressure were plotted over one wave cycle and compared to the corresponding predictions on the basis of third-order Stokes wave theory. The dynamic-pressure pattern was not the same during the acceleration and deceleration periods. Spatially, the dynamic pressure varies according to the faces of the wave, i.e. the pressure on the front face is lower than that on the rear face. The direction of wave propagation with respect to the current directly influences the essential features of the resulting dynamic pressure. The results demonstrate that interactions between travelling waves and a current lead more quickly to asymmetry. This article is part of the theme issue ‘Nonlinear water waves’.


Author(s):  
Gerasimos A. Kolokythas ◽  
Athanassios A. Dimas

In the present study, numerical simulations of the free-surface flow, developing by the propagation of nonlinear water waves over a rippled bottom, are performed assuming that the corresponding flow is two-dimensional, incompressible and viscous. The simulations are based on the numerical solution of the Navier-Stokes equations subject to the fully-nonlinear free-surface boundary conditions and the suitable bottom, inflow and outflow boundary conditions. The equations are properly transformed so that the computational domain becomes time-independent. For the spatial discretization, a hybrid scheme with finite-differences and Chebyshev polynomials is applied, while a fractional time-step scheme is used for the temporal discretization. A wave absorption zone is placed at the outflow region in order to efficiently minimize reflection of waves by the outflow boundary. The numerical model is validated by comparison to the analytical solution for the laminar, oscillatory, current flow which develops a uniform boundary layer over a horizontal bottom. For the propagation of finite-amplitude waves over a rigid rippled bed, the case with wavelength to water depth ratio λ/d0 = 6 and wave height to wavelength ratio H0/λ = 0.05 is considered. The ripples have parabolic shape, while their dimensions — length and height — are chosen accordingly to fit laboratory and field data. Results indicate that the wall shear stress over the ripples and the form drag forces on the ripples increase with increasing ripple height, while the corresponding friction force is insensitive to this increase. Therefore, the percentage of friction in the total drag force decreases with increasing ripple height.


Sign in / Sign up

Export Citation Format

Share Document