Characterization of a transcription factor SlNAC7 gene from Suaeda liaotungensis and its role in stress tolerance

Author(s):  
Hong-Fei Wang ◽  
Hong-Yan Shan ◽  
He Shi ◽  
Dan-Dan Wu ◽  
Tong-Tong Li ◽  
...  
AoB Plants ◽  
2015 ◽  
Vol 7 ◽  
pp. plv054 ◽  
Author(s):  
Pushp Sheel Shukla ◽  
Parinita Agarwal ◽  
Kapil Gupta ◽  
Pradeep K. Agarwal

Author(s):  
Teame Gereziher Mehari ◽  
Yanchao Xu ◽  
Richard Odongo Magwanga ◽  
Muhammad Jawad Umer ◽  
Margaret Linyerera Shiraku ◽  
...  

2017 ◽  
Vol 4 (1) ◽  
pp. 12 ◽  
Author(s):  
Kareem Mosa ◽  
Eslam Heb El-din ◽  
Ahmed Ismail ◽  
Fawzy El- Feky ◽  
Ali El-Refy

The tomato is ranked first amongst vegetable crops in Egypt in relation to surface area and production. The Egyptian tomato cultivar Edkawy has shown abiotic stress tolerance characteristics. However, there is not much information about the molecular characterization of this cultivar. Furthermore, information regarding the identification of abiotic stress tolerance genes from the Edkawy tomato cultivar is lacking. Here, we investigated the ability of the Edkawy cultivar to tolerate drought stress. Two varieties were used as a control in this study; Peto86 (sensitive variety) and Strain B (tolerant variety). Edkawy, Peto86 and Strain B varieties were exposed to drought stress by reducing the water supply gradually. Interestingly, Edkawy demonstrated a remarkable tolerance phenotype to drought stress. Furthermore, we identified and isolated two members of the AP2/ERF transcription factor family from Edkawy which are associated with abiotic stress, particularly drought, i.e. ERF1 and ERF5. Protein prediction, validation and active site prediction of ERF1 and ERF5 were also determined. In addition to the domain obtained by the pfam online tool, the interaction between Edkawy ERFs proteins and other proteins in the Solanaceae family was obtained. Furthermore, subcellular localization was determined by the ngLOC and Plant-mPLoc online tools. Characterization of the Edkawy tomato cultivar and isolation and identification of such transcription factors will help in the engineering of tomato plants with abiotic stress tolerance.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Rajni Parmar ◽  
Romit Seth ◽  
Ram Kumar Sharma

AbstractTea, being one of the most popular beverages requires large set of molecular markers for genetic improvement of quality, yield and stress tolerance. Identification of functionally relevant microsatellite or simple sequence repeat (SSR) marker resources from regulatory “Transcription factor (TF) genes” can be potential targets to expedite molecular breeding efforts. In current study, 2776 transcripts encoding TFs harbouring 3687 SSR loci yielding 1843 flanking markers were identified from traits specific transcriptome resource of 20 popular tea cultivars. Of these, 689 functionally relevant SSR markers were successfully validated and assigned to 15 chromosomes (Chr) of CSS genome. Interestingly, 589 polymorphic markers including 403 core-set of TF-SSR markers amplified 2864 alleles in key TF families (bHLH, WRKY, MYB-related, C2H2, ERF, C3H, NAC, FAR1, MYB and G2-like). Their significant network interactions with key genes corresponding to aroma, quality and stress tolerance suggests their potential implications in traits dissection. Furthermore, single amino acid repeat reiteration in CDS revealed presence of favoured and hydrophobic amino acids. Successful deployment of markers for genetic diversity characterization of 135 popular tea cultivars and segregation in bi-parental population suggests their wider utility in high-throughput genotyping studies in tea.


Genetics ◽  
1997 ◽  
Vol 146 (3) ◽  
pp. 859-869 ◽  
Author(s):  
Patrick J Ferris ◽  
Ursula W Goodenough

Diploid cells of Chlamydomonas reinhardtii that are heterozygous at the mating-type locus (mt  +/mt  –) differentiate as minus gametes, a phenomenon known as minus dominance. We report the cloning and characterization of a gene that is necessary and sufficient to exert this minus dominance over the plus differentiation program. The gene, called mid, is located in the rearranged (R) domain of the mt  – locus, and has duplicated and transposed to an autosome in a laboratory strain. The imp11 mt  – mutant, which differentiates as a fusion-incompetent plus gamete, carries a point mutation in mid. Like the fus1 gene in the mt  + locus, mid displays low codon bias compared with other nuclear genes. The mid sequence carries a putative leucine zipper motif, suggesting that it functions as a transcription factor to switch on the minus program and switch off the plus program of gametic differentiation. This is the first sex-determination gene to be characterized in a green organism.


Sign in / Sign up

Export Citation Format

Share Document