leucine zipper motif
Recently Published Documents


TOTAL DOCUMENTS

113
(FIVE YEARS 3)

H-INDEX

32
(FIVE YEARS 0)

Antibiotics ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 921
Author(s):  
Seong-Cheol Park ◽  
Heabin Kim ◽  
Jin-Young Kim ◽  
Hyeonseok Kim ◽  
Gang-Won Cheong ◽  
...  

Several antimicrobial peptides (AMPs) have been discovered, developed, and purified from natural sources and peptide engineering; however, the clinical applications of these AMPs are limited owing to their lack of abundance and side effects related to cytotoxicity, immunogenicity, and hemolytic activity. Accordingly, to improve cell selectivity for pseudin-2, an AMP from Pseudis paradoxa skin, in mammalian cells and pathogenic fungi, the sequence of pseudin-2 was modified by alanine or lysine at each position of two amino acids within the leucine-zipper motif. Alanine-substituted variants were highly selective toward fungi over HaCaT and erythrocytes and maintained their antifungal activities and mode of action (membranolysis). However, the antifungal activities of lysine-substituted peptides were reduced, and the compound could penetrate into fungal cells, followed by induction of mitochondrial reactive oxygen species and cell death. In vivo antifungal assays of analogous peptide showed excellent antifungal efficiency in a Candida tropicalis skin infection mouse model. Our results demonstrated the usefulness of selective amino acid substitution in the repeated sequence of the leucine-zipper motif for the design of AMPs with potent antimicrobial activities and low toxicity.


2020 ◽  
Author(s):  
Monare Thulo ◽  
Megan A Rabie ◽  
Naadira Pahad ◽  
Heather L Donald ◽  
Ashleigh A Blane ◽  
...  

FOX proteins are a superfamily of transcription factors which share a DNA binding domain referred to as the forkhead domain. Our focus is on the FOXP subfamily members, which are involved in language and cognition amongst other things. The FOXP proteins contain a conserved zinc finger and a leucine zipper motif in addition to the forkhead domain. The remainder of the sequence is predicted to be unstructured and includes an acidic C-terminal tail. In this study we aim to investigate how both the structured and unstructured regions of the sequence cooperate so as to enable FOXP proteins to perform their function. We do this by studying the effect of these regions on both oligomerisation and DNA binding. Structurally, the FOXP proteins appear to be comparatively globular with a high proportion of helical structure. The proteins multimerise via the leucine zipper and the stability of the multimers is controlled by the unstructured interlinking sequence including the acid rich tail. FOXP2 is more compact than FOXP1, has a greater propensity to form higher order oligomers, and binds DNA with stronger affinity. We conclude that while the forkhead domain is necessary for DNA binding, the affinity of the binding event is attributable to the leucine zipper, and the unstructured regions play a significant role in the specificity of binding. The acid rich tail forms specific contacts with the forkhead domain which may influence oligomerisation and DNA binding and therefore the acid rich tail may play an important regulatory role in FOXP transcription. 


2018 ◽  
Vol 19 (12) ◽  
pp. 4047 ◽  
Author(s):  
Giovanna Sessa ◽  
Monica Carabelli ◽  
Marco Possenti ◽  
Giorgio Morelli ◽  
Ida Ruberti

HD-Zip proteins are unique to plants, and contain a homeodomain closely linked to a leucine zipper motif, which are involved in dimerization and DNA binding. Based on homology in the HD-Zip domain, gene structure and the presence of additional motifs, HD-Zips are divided into four families, HD-Zip I–IV. Phylogenetic analysis of HD-Zip genes using transcriptomic and genomic datasets from a wide range of plant species indicate that the HD-Zip protein class was already present in green algae. Later, HD-Zips experienced multiple duplication events that promoted neo- and sub-functionalizations. HD-Zip proteins are known to control key developmental and environmental responses, and a growing body of evidence indicates a strict link between members of the HD-Zip II and III families and the auxin machineries. Interactions of HD-Zip proteins with other hormones such as brassinolide and cytokinin have also been described. More recent data indicate that members of different HD-Zip families are directly involved in the regulation of abscisic acid (ABA) homeostasis and signaling. Considering the fundamental role of specific HD-Zip proteins in the control of key developmental pathways and in the cross-talk between auxin and cytokinin, a relevant role of these factors in adjusting plant growth and development to changing environment is emerging.


Author(s):  
Giovanna Sessa ◽  
Monica Carabelli ◽  
Marco Possenti ◽  
Giorgio Morelli ◽  
Ida Ruberti

HD-Zip proteins are unique to plants, and contain a homeodomain closely linked to a leucine zipper motif, which are involved in dimerization and DNA binding. Based on homology in the HD-Zip domain, gene structure and the presence of additional motifs, HD-Zips are divided into four families, HD-Zip I–IV. Phylogenetic and bioinformatics analysis of HD-Zip genes using transcriptomic and genomic datasets from a wide range of plant species indicate that the HD-Zip protein class was already present in green algae. Later, HD-Zips experienced multiple duplication events that promoted neo- and sub-functionalizations. HD-Zip proteins are known to control key developmental and environmental responses, and a growing body of evidence indicates a strict link between members of the HD-Zip II and III families and the auxin machineries. Interactions of HD-Zip proteins with other hormones such as brassinolide and cytokinin have also been described. However, it is striking that among the genes regulated by REV, a HD-Zip III protein playing a key role in apical development, are genes that mediate ABA signaling. Furthermore, HAT1 and HAT3, two HD-Zip II proteins involved in key developmental processes, repress ABA biosynthesis and signaling, indicating an essential role of these factors in adjusting development to changing environment.


2018 ◽  
Vol 86 (8) ◽  
pp. 844-852
Author(s):  
Mengya Chai ◽  
Bo Liu ◽  
Fude Sun ◽  
Zhentai Zhu ◽  
Lida Xu ◽  
...  

2017 ◽  
Vol 91 (17) ◽  
Author(s):  
Matthew S. Loftus ◽  
Nancy Verville ◽  
Dean H. Kedes

ABSTRACT Productive viral infection often depends on the manipulation of the cytoskeleton. Herpesviruses, including rhesus monkey rhadinovirus (RRV) and its close homolog, the oncogenic human gammaherpesvirus Kaposi's sarcoma-associated herpesvirus/human herpesvirus 8 (KSHV/HHV8), exploit microtubule (MT)-based retrograde transport to deliver their genomes to the nucleus. Subsequently, during the lytic phase of the life cycle, the maturing viral particles undergo orchestrated translocation to specialized regions within the cytoplasm, leading to tegumentation, secondary envelopment, and then egress. As a result, we hypothesized that RRV might induce changes in the cytoskeleton at both early and late stages of infection. Using confocal imaging, we found that RRV infection led to the thickening and acetylation of MTs emanating from the MT-organizing center (MTOC) shortly after viral entry and more pronounced and diffuse MT reorganization during peak stages of lytic gene expression and virion production. We subsequently identified open reading frame 52 (ORF52), a multifunctional and abundant tegument protein, as being the only virally encoded component responsible for these cytoskeletal changes. Mutational and modeling analyses indicated that an evolutionarily conserved, truncated leucine zipper motif near the N terminus as well as a strictly conserved arginine residue toward the C terminus of ORF52 play critical roles in its ability to rearrange the architecture of the MT cytoskeleton. Taken together, our findings combined with data from previous studies describing diverse roles for ORF52 suggest that it likely binds to different cellular components, thereby allowing context-dependent modulation of function. IMPORTANCE A thorough understanding of the processes governing viral infection includes knowledge of how viruses manipulate their intracellular milieu, including the cytoskeleton. Altering the dynamics of actin or MT polymerization, for example, is a common strategy employed by viruses to ensure efficient entry, maturation, and egress as well as the avoidance of antiviral defenses through the sequestration of key cellular factors. We found that infection with RRV, a homolog of the human pathogen KSHV, led to perinuclear wrapping by acetylated MT bundles and identified ORF52 as the viral protein underlying these changes. Remarkably, incoming virions were able to supply sufficient ORF52 to induce MT thickening and acetylation near the MTOC, potentially aiding in the delivery viral genomes to the nucleus. Although the function of MT alterations during late stages of infection requires further study, ORF52 shares functional and structural similarities with alphaherpesvirus VP22, underscoring the evolutionary importance of MT cytoskeletal manipulations for this virus family.


Structure ◽  
2017 ◽  
Vol 25 (3) ◽  
pp. 446-457 ◽  
Author(s):  
Alexandra C. Chadwick ◽  
Davin R. Jensen ◽  
Paul J. Hanson ◽  
Philip T. Lange ◽  
Sarah C. Proudfoot ◽  
...  

2017 ◽  
Vol 46 (34) ◽  
pp. 11166-11170 ◽  
Author(s):  
Sabina Rodríguez-Hermida ◽  
Emi Evangelio ◽  
Marta Rubio-Martínez ◽  
Inhar Imaz ◽  
Albert Verdaguer ◽  
...  

The packing of peptide-based coordination layers through a 2D-Velcro-like Leu array enables obtaining hydrophobic materials.


Sign in / Sign up

Export Citation Format

Share Document