Influence of porcine-derived collagen matrix on endothelial progenitor cells: an in vitro study

Odontology ◽  
2014 ◽  
Vol 104 (1) ◽  
pp. 19-26 ◽  
Author(s):  
Andreas Max Pabst ◽  
Karl-Martin Lehmann ◽  
Christian Walter ◽  
Maximilian Krüger ◽  
Stefan-Ioan Stratul ◽  
...  
PLoS ONE ◽  
2014 ◽  
Vol 9 (2) ◽  
pp. e88213 ◽  
Author(s):  
Qing Qin ◽  
Juying Qian ◽  
Lei Ge ◽  
Li Shen ◽  
Jianguo Jia ◽  
...  

2015 ◽  
Vol 38 (4) ◽  
pp. 224-232 ◽  
Author(s):  
Noélie B. Thébaud ◽  
Audrey Aussel ◽  
Robin Siadous ◽  
Jérome Toutain ◽  
Reine Bareille ◽  
...  

2019 ◽  
Vol 29 (4) ◽  
pp. 466-471 ◽  
Author(s):  
Raluca Ion ◽  
Yvan Bédouin ◽  
Thierry Gloriant ◽  
Gladiola Andruseac ◽  
Doina-Margareta Gordin ◽  
...  

2008 ◽  
Vol 69 (3) ◽  
pp. 252-259 ◽  
Author(s):  
Xiang-Quan Kong ◽  
Meng-Zan Wang ◽  
Le-Xin Wang ◽  
Jing-Bo Kong ◽  
Xue-Wen Qi ◽  
...  

Author(s):  
WAHYU WIDOWATI ◽  
RIMONTA F. GUNANEGARA ◽  
TERESA LILIANA WARGASETIA ◽  
HANNA SARI WIDYA KUSUMA ◽  
SEILA ARUMWARDANA ◽  
...  

Objective: Circulating EPCs (endothelial progenitor cells) play a role in neovascularization and vascular repair. Oxidative stress impairs endothelial progenitor. Flavonoid is a phytochemical compound for antioxidant activity. Flavonoid effects toward oxidative stress, apoptosis, and expression of the cell markers on EPCs are not fully understood. This study was aimed to elucidate the effects of quercetin, kaempferol, and myricetin toward oxidative stress, apoptosis, and cell markers of peripheral blood-derived-EPCs. Methods: EPCs (endothelial progenitor cells) were isolated from peripheral blood mononuclear cells (PBMNCs) using cultivation under EPCs spesific media. Oxidative stress in EPCs was induced by H2O2 and then treated by quercetin, kaempferol, and myricetin. Cytotoxicity was measured by 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay, while intracellular reactive oxygen species (ROS), apoptosis and characterization of cells, which expressed CD133 and KDR, was measured using flow cytometry. Results: Quercetin, kaempferol, and myricetin at concentration 12.50 µmol/l were not toxic on EPCs as the cells viability were 96.11±4.03%, 95.42±7.75%, and 94.22±9.49%, respectively. Flavonoids decreased intracellular ROS level in EPCs (quercetin: 14.38±1.47%, kaempferol: 20.21±6.25%, and myricetin: 13.88±4.02%) compared to EPCs treated with H2O2 (30.70%±1.04). Percetage of EPCs apoptosis was not significantly different among each treatment. Immunophenotyping showed the increasing of CD133 and KDR expression in EPCs treated with flavonoids. Conclusion: Quercetin, kaempferol, and myricetin were safe for EPCs, decreased ROS levels, and increased CD133 and KDR expression. However, the flavonoids did not significantly affect EPCs apoptosis.


2007 ◽  
Vol 30 (4) ◽  
pp. 96
Author(s):  
Michael R. Ward ◽  
Qiuwang Zhang ◽  
Duncan J. Stewart ◽  
Michael J.B. Kutryk

Autologous endothelial progenitor cells (EPCs) have been used extensively in the development of cell-based therapy for acute MI. However, EPCs isolated from patients with CAD and/or CAD risk factors have reduced regenerative activity compared to cells from healthy subjects. As in endothelial cells, endothelial NO synthase (eNOS) expression and subsequent NO production are believed to be critical determinants of EPC function. Recently, the ability of EPCs to migrate in vitro in response to chemotactic stimuli has been shown to predict their regenerative capacity in clinical studies. Therefore, we hypothesized that the regenerative function of EPCs from patients with or at high risk for CAD will be enhanced by overexpression of eNOS, as assessed by migratory capacity. Methods: EPCs were isolated from the blood of human subjects with CAD risk factors (>15% Framingham risk score; FRS) (± CAD) by Ficoll gradient separation and differential culture. Following 3 days in culture, cells were transduced using lentivirus vectors containing either eNOS or GFP (sham) at an MOI of 3. The cells were cultured for an additional 5 days before being used in functional assays. Cell migration and chemotaxis in response to VEGF (50 ng/mL) and SDF-1 (100 ng/mL) were assessed using a modified Boyden Chamber assay. Results: Transduction at an MOI of 3 led to a ~90-100-fold increase in eNOS mRNA expression and a 5-6 fold increase in eNOS protein expression, as assessed by qRT-PCR and Western Blotting. Moreover, there was a significant improvement in the migration of EPCs following eNOS transduction compared to sham-transduced EPCs in response to both VEGF (44.3 ± 8.4 vs. 31.1 ± 4.6 cells/high power field; n=10, p < 0.05) and SDF-1 (51.9 ± 11.1 vs. 34.5 ± 3.3 cells/HPF; n=10, p < 0.05). Conclusions: These data show that the reduced migration capacity of EPCs isolated from patients with CAD and/or CAD risk factors can be significantly improved through eNOS overexpression in these cells. Thus, eNOS transduction of autologous EPCs may enhance their ability to restore myocardial perfusion and function following acute MI. We intend to further explore the regenerative potential of eNOS-transduced EPCs using various in vitro and in vivo models.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1152
Author(s):  
Alberto Polo-Montalvo ◽  
Laura Casarrubios ◽  
María Concepción Serrano ◽  
Adrián Sanvicente ◽  
María José Feito ◽  
...  

Due to their specific mesoporous structure and large surface area, mesoporous bioactive glasses (MBGs) possess both drug-delivery ability and effective ionic release to promote bone regeneration by stimulating osteogenesis and angiogenesis. Macrophages secrete mediators that can affect both processes, depending on their phenotype. In this work, the action of ion release from MBG-75S, with a molar composition of 75SiO2-20CaO-5P2O5, on osteogenesis and angiogenesis and the modulatory role of macrophages have been assessed in vitro with MC3T3-E1 pre-osteoblasts and endothelial progenitor cells (EPCs) in monoculture and in coculture with RAW 264.7 macrophages. Ca2+, phosphorous, and silicon ions released from MBG-75S were measured in the culture medium during both differentiation processes. Alkaline phosphatase activity and matrix mineralization were quantified as the key markers of osteogenic differentiation in MC3T3-E1 cells. The expression of CD31, CD34, VEGFR2, eNOS, and vWF was evaluated to characterize the EPC differentiation into mature endothelial cells. Other cellular parameters analyzed included the cell size and complexity, intracellular calcium, and intracellular content of the reactive oxygen species. The results obtained indicate that the ions released by MBG-75S promote osteogenesis and angiogenesis in vitro, evidencing a macrophage inhibitory role in these processes and demonstrating the high potential of MBG-75S for the preparation of implants for bone regeneration.


Sign in / Sign up

Export Citation Format

Share Document