Engineering Saccharomyces cerevisiae to produce feruloyl esterase for the release of ferulic acid from switchgrass

2011 ◽  
Vol 38 (12) ◽  
pp. 1961-1967 ◽  
Author(s):  
Dominic W. S. Wong ◽  
Victor J. Chan ◽  
Sarah B. Batt ◽  
Gautam Sarath ◽  
Hans Liao
2000 ◽  
Vol 182 (5) ◽  
pp. 1346-1351 ◽  
Author(s):  
David L. Blum ◽  
Irina A. Kataeva ◽  
Xin-Liang Li ◽  
Lars G. Ljungdahl

ABSTRACT The cellulosome of Clostridium thermocellum is a multiprotein complex with endo- and exocellulase, xylanase, β-glucanase, and acetyl xylan esterase activities. XynY and XynZ, components of the cellulosome, are composed of several domains including xylanase domains and domains of unknown function (UDs). Database searches revealed that the C- and N-terminal UDs of XynY and XynZ, respectively, have sequence homology with the sequence of a feruloyl esterase of strain PC-2 of the anaerobic fungusOrpinomyces. Purified cellulosomes from C. thermocellum were found to hydrolyze FAXX (O-{5-O-[(E)-feruloyl]-α-l-arabinofuranosyl}-(1→3)-O-β-d-xylopyranosyl-(1→4)-d-xylopyranose) and FAX3(5-O-[(E)-feruloyl]-[O-β-d-xylopyranosyl-(1→2)]-O-α-l-arabinofuranosyl-[1→3]}-O-β-d-xylopyranosyl-(1→4)-d-xylopyranose), yielding ferulic acid as a product, indicating that they have feruloyl esterase activity. Nucleotide sequences corresponding to the UDs of XynY and XynZ were cloned into Escherichia coli, and the expressed proteins hydrolyzed FAXX and FAX3. The recombinant feruloyl esterase domain of XynZ alone (FAEXynZ) and with the adjacent cellulose binding domain (FAE-CBDXynZ) were characterized. FAE-CBDXynZhad a molecular mass of 45 kDa that corresponded to the expected product of the 1,203-bp gene. Km andV max values for FAX3 were 5 mM and 12.5 U/mg, respectively, at pH 6.0 and 60°C. PAX3, a substrate similar to FAX3 but with ap-coumaroyl group instead of a feruloyl moiety was hydrolyzed at a rate 10 times slower. The recombinant enzyme was active between pH 3 to 10 with an optimum between pH 4 to 7 and at temperatures up to 70°C. Treatment of Coastal Bermuda grass with the enzyme released mainly ferulic acid and a lower amount ofp-coumaric acid. FAEXynZ had similar properties. Removal of the 40 C-terminal amino acids, residues 247 to 286, of FAEXynZ resulted in protein without activity. Feruloyl esterases are believed to aid in a release of lignin from hemicellulose and may be involved in lignin solubilization. The presence of feruloyl esterase in the C. thermocellumcellulosome together with its other hydrolytic activities demonstrates a powerful enzymatic potential of this organelle in plant cell wall decomposition.


1999 ◽  
Vol 65 (12) ◽  
pp. 5500-5503 ◽  
Author(s):  
Ronald P. de Vries ◽  
Jaap Visser

ABSTRACT Feruloyl esterases can remove aromatic residues (e.g., ferulic acid) from plant cell wall polysaccharides (xylan, pectin) and are essential for complete degradation of these polysaccharides. Expression of the feruloyl esterase-encoding gene (faeA) fromAspergillus niger depends on d-xylose (expression is mediated by XlnR, the xylanolytic transcriptional activator) and on a second system that responds to aromatic compounds with a defined ring structure, such as ferulic acid and vanillic acid. Several compounds were tested, and all of the inducing compounds contained a benzene ring which had a methoxy group at C-3 and a hydroxy group at C-4 but was not substituted at C-5. Various aliphatic groups occurred at C-1. faeA expression in the presence of xylose or ferulic acid was repressed by glucose. faeA expression in the presence of ferulic acid and xylose was greater thanfaeA expression in the presence of either compound alone. The various inducing systems allow A. niger to produce feruloyl esterase not only during growth on xylan but also during growth on other ferulic acid-containing cell wall polysaccharides, such as pectin.


2006 ◽  
Vol 73 (4) ◽  
pp. 872-880 ◽  
Author(s):  
Anthony Levasseur ◽  
Markku Saloheimo ◽  
David Navarro ◽  
Martina Andberg ◽  
Frédéric Monot ◽  
...  

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Emma Zsófia Aletta Nagy ◽  
Csaba Levente Nagy ◽  
Alina Filip ◽  
Katalin Nagy ◽  
Emese Gál ◽  
...  

2004 ◽  
Vol 52 (3) ◽  
pp. 602-608 ◽  
Author(s):  
Stefan Coghe ◽  
Koen Benoot ◽  
Filip Delvaux ◽  
Bart Vanderhaegen ◽  
Freddy R. Delvaux

Sign in / Sign up

Export Citation Format

Share Document