A Multi-scale Corrosion Fatigue Damage Model of Aluminum Alloy Considering Multiple Pits and Cracks

2018 ◽  
Vol 31 (6) ◽  
pp. 731-743 ◽  
Author(s):  
Bin Sun ◽  
Yang Zheng ◽  
Zhaoxia Li
2019 ◽  
Vol 29 (6) ◽  
pp. 887-901 ◽  
Author(s):  
Chen Fan ◽  
Zhaoxia Li ◽  
Ying Wang

Cables are the most sensitive components in cable-supported bridges, and the failure of cables is usually caused by the degradation of mechanical properties of internal wires. Based on Faraday's law and the rates of microcrack initiation and propagation, a multi-scale corrosion fatigue damage model was developed to describe the damage evolution in the stages of pit growth and microcrack propagation. The accuracy and effectiveness of this damage model were also verified through the experimental data of corrosive fatigue life of high-strength bridge wires. The result shows that this damage model can describe the multi-scale corrosion fatigue damage evolution process of high-strength bridge wires reasonably and effectively, which provides a new way to better understand the trans-scale damage evolution mechanism during the corrosion fatigue process of high-strength bridge wires.


PAMM ◽  
2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Nicola Magino ◽  
Jonathan Köbler ◽  
Heiko Andrä ◽  
Matti Schneider ◽  
Fabian Welschinger

2011 ◽  
Vol 328-330 ◽  
pp. 1440-1444
Author(s):  
Hua Zou ◽  
Qiang Li ◽  
Shou Guang Sun

Cumulative fatigue damage is an important consideration in determining the fatigue life of structures. A cumulative linear damage rule cannot provide a reasonable explanation for cumulative fatigue damage, but a damage curve method based on nonlinear cumulative fatigue damage model can give a reasonable explanation. In this paper, a specific mathematical model is put forward, which is based on the damage curve method. In the model, miner formula is modified properly and an exponent formula is give out to fit the damage accumulate. According to a two-step fatigue test of aluminum–alloy welded joint, the comparison between the calculated results and the testing results is less than 5%. It shows that the model is reasonable and accuracy.


2019 ◽  
Vol 29 (4) ◽  
pp. 591-609 ◽  
Author(s):  
Huajing Guo ◽  
Bin Sun ◽  
Zhaoxia Li

In order to compute the process from the damage accumulation to failure of steel structures under extreme cyclic loading and temperature, a multi-scale fatigue–creep damage model has been developed. Based on the balance of micro-crack number density theory, the multi-scale fatigue damage model has been established using generalized self-consistent method. In the fatigue damage model, the scatter of micro-crack length is expressed by two-parameter Weibull distribution and the interaction among micro-cracks has been studied. In turn, the multi-scale fatigue–creep damage model has been developed by considering the nonlinear coupling of fatigue damage and creep damage. The validity of the developed model has been verified by comparing the predicted damage evolution curves with experimental damage data. The developed model enables to more accurately study the fatigue degradation of steel structures than the phenomenological damage models. Fatigue–creep damage analysis on steel turbine blades under different extreme operating condition are performed using the developed model.


Metals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 954
Author(s):  
Hailong Wang ◽  
Wenping Deng ◽  
Tao Zhang ◽  
Jianhua Yao ◽  
Sujuan Wang

Material properties affect the surface finishing in ultra-precision diamond cutting (UPDC), especially for aluminum alloy 6061 (Al6061) in which the cutting-induced temperature rise generates different types of precipitates on the machined surface. The precipitates generation not only changes the material properties but also induces imperfections on the generated surface, therefore increasing surface roughness for Al6061 in UPDC. To investigate precipitate effect so as to make a more precise control for the surface quality of the diamond turned Al6061, it is necessary to confirm the compositions and material properties of the precipitates. Previous studies have indicated that the major precipitate that induces scratch marks on the diamond turned Al6061 is an AlFeSi phase with the composition of Al86.1Fe8.3Si5.6. Therefore, in this paper, to study the material properties of the AlFeSi phase and its influences on ultra-precision machining of Al6061, an elastoplastic-damage model is proposed to build an elastoplastic constitutive model and a damage failure constitutive model of Al86.1Fe8.3Si5.6. By integrating finite element (FE) simulation and JMatPro, an efficient method is proposed to confirm the physical and thermophysical properties, temperature-phase transition characteristics, as well as the stress–strain curves of Al86.1Fe8.3Si5.6. Based on the developed elastoplastic-damage parameters of Al86.1Fe8.3Si5.6, FE simulations of the scratch test for Al86.1Fe8.3Si5.6 are conducted to verify the developed elastoplastic-damage model. Al86.1Fe8.3Si5.6 is prepared and scratch test experiments are carried out to compare with the simulation results, which indicated that, the simulation results agree well with those from scratch tests and the deviation of the scratch force in X-axis direction is less than 6.5%.


Polymers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 2250
Author(s):  
Mohammad Amjadi ◽  
Ali Fatemi

Short glass fiber-reinforced (SGFR) thermoplastics are used in many industries manufactured by injection molding which is the most common technique for polymeric parts production. Glass fibers are commonly used as the reinforced material with thermoplastics and injection molding. In this paper, a critical plane-based fatigue damage model is proposed for tension–tension or tension–compression fatigue life prediction of SGFR thermoplastics considering fiber orientation and mean stress effects. Temperature and frequency effects were also included by applying the proposed damage model into a general fatigue model. Model predictions are presented and discussed by comparing with the experimental data from the literature.


2006 ◽  
Vol 514-516 ◽  
pp. 804-809
Author(s):  
S. Gao ◽  
Ewald Werner

The forging die material, a high strength steel designated W513 is considered in this paper. A fatigue damage model, based on thermodynamics and continuum damage mechanics, is constructed in which both the previous damage and the loading sequence are considered. The unknown material parameters in the model are identified from low cycle fatigue tests. Damage evolution under multi-level fatigue loading is investigated. The results show that the fatigue life is closely related to the loading sequence. The fatigue life of the materials with low fatigue loading first followed by high fatigue loading is longer than that for the reversed loading sequence.


Sign in / Sign up

Export Citation Format

Share Document