A novel plant volatile attractant scheme to protect corn in China from the white-spotted flower chafer (Coleoptera: Scarabaeidae: Cetoniinae)

2011 ◽  
Vol 84 (3) ◽  
pp. 327-335 ◽  
Author(s):  
Ri-zhao Chen ◽  
yu Li
Planta Medica ◽  
2016 ◽  
Vol 81 (S 01) ◽  
pp. S1-S381
Author(s):  
JAA do Nascimento Júnior ◽  
BS dos Santos ◽  
LCA de Araújo ◽  
AVA Lima ◽  
TD da Silva ◽  
...  

2021 ◽  
Author(s):  
Kamala Jayanthi Pagadala Damodaram ◽  
Hanamant Shivalingappa Gadad ◽  
Saravan Kumar Parepally ◽  
Sridhar Vaddi ◽  
Laxman Ramanna Hunashikatti ◽  
...  

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Xiao-Bin Shi ◽  
Shuo Yan ◽  
Chi Zhang ◽  
Li-Min Zheng ◽  
Zhan-Hong Zhang ◽  
...  

Abstract Background Most plant viruses rely on vectors for their transmission and spread. One of the outstanding biological questions concerning the vector-pathogen-symbiont multi-trophic interactions is the potential involvement of vector symbionts in the virus transmission process. Here, we used a multi-factorial system containing a non-persistent plant virus, cucumber mosaic virus (CMV), its primary vector, green peach aphid, Myzus persicae, and the obligate endosymbiont, Buchnera aphidicola to explore this uncharted territory. Results Based on our preliminary research, we hypothesized that aphid endosymbiont B. aphidicola can facilitate CMV transmission by modulating plant volatile profiles. Gene expression analyses demonstrated that CMV infection reduced B. aphidicola abundance in M. persicae, in which lower abundance of B. aphidicola was associated with a preference shift in aphids from infected to healthy plants. Volatile profile analyses confirmed that feeding by aphids with lower B. aphidicola titers reduced the production of attractants, while increased the emission of deterrents. As a result, M. persicae changed their feeding preference from infected to healthy plants. Conclusions We conclude that CMV infection reduces the B. aphidicola abundance in M. persicae. When viruliferous aphids feed on host plants, dynamic changes in obligate symbionts lead to a shift in plant volatiles from attraction to avoidance, thereby switching insect vector’s feeding preference from infected to healthy plants.


Coatings ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1267
Author(s):  
Palpandian Preethi ◽  
Kadambavanasundaram Soorianathasundaram ◽  
Athipathi Sadasakthi ◽  
Kizhaeral Sevathapandian Subramanian ◽  
Sanikommu Vijay Rakesh Reddy ◽  
...  

Mango is a highly preferred seasonal tropical fruit with a maximum shelf-life of five to seven days. Hexanal is a plant volatile compound assayed in green tissues and showing significance in enhancing storage life and fruit quality attributes by preserving membrane integrity. This experiment explored the effect of the pre-harvest application of an aqueous hexanal composition (active ingredient: 0.02% hexanal) in altering the post-harvest storage behavior of four mango cultivars. The pre-harvest application of the hexanal formulation to the fruit surface twice before the harvest date drastically slowed down the physiological loss in weight by 70% to 80%, and reduced the ethylene evolution rate by two to three folds, respectively. The pre-harvest hexanal formulation spray combined with post-harvest cold storage prominently improved the storage life along with the total soluble solids, total sugars, ascorbic acid and carotenoid content compared to untreated fruits stored in ambient conditions. Though ripening coincides with the increased activity of enzymes, the hexanal formulation spray acts predominantly in bringing down the activities of fruit softening enzymes viz. pectinmethlyesterase (43%) and polygalacturonases (37%), and antioxidant enzymes viz. peroxidase (67%) and catalase (45%), respectively.


Sign in / Sign up

Export Citation Format

Share Document