Scale-up and control of droplet production in coupled microfluidic flow-focusing geometries

2012 ◽  
Vol 13 (1) ◽  
pp. 65-73 ◽  
Author(s):  
Molly K. Mulligan ◽  
Jonathan P. Rothstein
2021 ◽  
Author(s):  
Byeong-Ui Moon ◽  
Niki Abbasi ◽  
Steven G. Jones ◽  
Dae Kun Hwang ◽  
Scott S. H. Tsai

We present a simple microfluidic system that generates water-in-water, aqueous two phase system (ATPS) droplets, by passive flow focusing. ATPS droplet formation is achieved by applying weak hydrostatic pressures, with liquid-filled pipette tips as fluid columns at the inlets, to introduce low speed flows to the flow focusing junction. To control the size of the droplets, we systematically vary the interfacial tension and viscosity of the ATPS fluids, and adjust the fluid column height at the fluid inlets. The size of the droplets scales with a power-law of the ratio of viscous stresses in the two ATPS phases. Overall, we find a drop size coefficient of variation (CV; i.e. polydispersity) of about 10 %. We also find that when drops form very close to the flow focusing junction, the drops have CV of less than 1 %. Our droplet generation method is easily scalable: we demonstrate a parallel system that generates droplets simultaneously, and improves the droplet production rate by up to one order-of-magnitude. Finally, we show the potential application of our system for encapsulating cells in water-in-water emulsions, by encapsulating microparticles and cells. To the best of our knowledge, our microfluidic technique is the first that forms low interfacial tension ATPS droplets without applying external perturbations. We anticipate that this simple approach will find utility in drug and cell delivery applications because of the all-biocompatible nature of the water-in-water ATPS environment.


Author(s):  
Thomas Mainka ◽  
David Weirathmüller ◽  
Christoph Herwig ◽  
Stefan Pflügl

Abstract Saline wastewater contaminated with aromatic compounds can be frequently found in various industrial sectors. Those compounds need to be degraded before reuse of wastewater in other process steps or release to the environment. Halophiles have been reported to efficiently degrade aromatics, but their application to treat industrial wastewater is rare. Halophilic processes for industrial wastewater treatment need to satisfy certain requirements: a continuous process mode, low operational expenditures, suitable reactor systems and a monitoring and control strategy. The aim of this review is to provide an overview of halophilic microorganisms, principles of aromatic biodegradation, and sources of saline wastewater containing aromatics and other contaminants. Finally, process examples for halophilic wastewater treatment and potential process monitoring strategies are discussed. To further illustrate the significant potential of halophiles for saline wastewater treatment and to facilitate development of ready-to-implement processes, future research should focus on scale-up and innovative process monitoring and control strategies.


2018 ◽  
Vol 63 (9) ◽  
pp. 1328-1333
Author(s):  
D. V. Nozdriukhin ◽  
N. A. Filatov ◽  
A. A. Evstrapov ◽  
A. S. Bukatin

2021 ◽  
Author(s):  
Vaskar Gnyawali ◽  
Byeong-Ui Moon ◽  
Jennifer Kieda ◽  
Raffi Karshafian ◽  
Michael C. Kolios ◽  
...  

We present a microfluidic technique that shrinks lipidstabilized microbubbles from O(100) to O(1) µm in diameter–the size that is desirable in applications as ultrasound contrast agents. We achieve microbubble shrinkage by utilizing vacuum channels that are adjacent to the microfluidic flow channels to extract air from the microbubbles. We tune a single parameter, the vacuum pressure, to accurately control the final microbubble size. Finally, we demonstrate that the resulting O(1) µm diameter microbubbles have similar stability to microfluidics generated microbubbles that are not exposed to vacuum shrinkage. We anticipate that, with additional scale-up, this simple approach to shrink microbubbles generated microfluidically will be desirable in ultrasound imaging and therapeutics applications.


Author(s):  
Anand Srinivasan ◽  
José L. López-Ribot ◽  
Anand K. Ramasubramanian

Microfluidics is the manipulation and control of fluids in small scale, and has heralded a new age in science as evidenced by the rapid increase in the amount and quality of academic and industrial research output in this area in the recent times. Microfluidics has shown tremendous promise in both fundamental and applied research in the field of vascular bioengineering. In this review, we outline the basic principles of microfluidic flow and fabrication techniques, and describe the recent advances in the applications of microfluidic devices in diagnostic and prognostic vascular bioengineering. The field is still in its infancy and has a great potential for research and development as it matures to deliver commercially viable products. This review, focusing on the current status of microfluidic applications to diagnose and treat blood-related disorders, should be a valuable and opportune addition to the literature of interest to both academia and industry.


Sign in / Sign up

Export Citation Format

Share Document