Multilayer patterning technique for micro- and nanofluidic chip fabrication

2017 ◽  
Vol 21 (12) ◽  
Author(s):  
Zhifu Yin ◽  
Helin Zou
Nanomaterials ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1665
Author(s):  
Rui D. Oliveira ◽  
Ana Mouquinho ◽  
Pedro Centeno ◽  
Miguel Alexandre ◽  
Sirazul Haque ◽  
...  

The pursuit of ever-more efficient, reliable, and affordable solar cells has pushed the development of nano/micro-technological solutions capable of boosting photovoltaic (PV) performance without significantly increasing costs. One of the most relevant solutions is based on light management via photonic wavelength-sized structures, as these enable pronounced efficiency improvements by reducing reflection and by trapping the light inside the devices. Furthermore, optimized microstructured coatings allow self-cleaning functionality via effective water repulsion, which reduces the accumulation of dust and particles that cause shading. Nevertheless, when it comes to market deployment, nano/micro-patterning strategies can only find application in the PV industry if their integration does not require high additional costs or delays in high-throughput solar cell manufacturing. As such, colloidal lithography (CL) is considered the preferential structuring method for PV, as it is an inexpensive and highly scalable soft-patterning technique allowing nanoscopic precision over indefinitely large areas. Tuning specific parameters, such as the size of colloids, shape, monodispersity, and final arrangement, CL enables the production of various templates/masks for different purposes and applications. This review intends to compile several recent high-profile works on this subject and how they can influence the future of solar electricity.


2013 ◽  
Vol 52 (1) ◽  
pp. 251-257 ◽  
Author(s):  
Z. Zhu ◽  
M. Weigand ◽  
V. Krishnamurthy ◽  
D. Sullivan
Keyword(s):  

2000 ◽  
Vol 340 (1) ◽  
pp. 51-64 ◽  
Author(s):  
S Wunderlich ◽  
L Redlich ◽  
F Schmidl ◽  
L Dörrer ◽  
T Köhler ◽  
...  

2010 ◽  
Vol 12 (9) ◽  
pp. 095005 ◽  
Author(s):  
D Heine ◽  
W Rohringer ◽  
D Fischer ◽  
M Wilzbach ◽  
T Raub ◽  
...  

2007 ◽  
Vol 121-123 ◽  
pp. 611-614
Author(s):  
Che Hsin Lin ◽  
Jen Taie Shiea ◽  
Yen Lieng Lin

This paper proposes a novel method to on-chip fabricate a none-dead-volume microtip for ESI-MS applications. The microfluidic chip and ESI tip are fabricated in low-cost plastic based materials using a simple and rapid fabrication process. A constant-speed-pulling method is developed to fabricate the ESI tip by pulling mixed PMMA glue using a 30-μm stainless wire through the pre-formed microfluidic channel. The equilibrium of surface tension of PMMA glue will result in a sharp tip after curing. A highly uniform micro-tip can be formed directly at the outlet of the microfluidic channel with minimum dead-volume zone. Detection of caffeine, myoglobin, lysozyme and cytochrome C biosamples confirms the microchip device can be used for high resolution ESI-MS applications.


2002 ◽  
Vol 735 ◽  
Author(s):  
D. Guo ◽  
H. McNally ◽  
M. Pingle ◽  
D. Bergstrom ◽  
R. Bashir

ABSTRACTProtein patterning techniques are crucial for the development of antibody-based biosensor and the study of controlled cell growth. This paper discusses a protein patterning technique based on microelectronic fabrication, DNA hybridization and biotin-streptavidin pair. A gold-on-silicon-dioxide substrate with micron size pattern was fabricated with photolithography and lift-off process. The average surface roughness of the gold pattern is 4.3 nm, measured by contact mode AFM. Thiol derivatized single stranded DNA was attached to the gold pattern surface by the chemical bonding between gold atom and sulfur atom. Surface attached DNA was then hybridized with a biotin conjugated complementary DNA sequence. Thus, the gold pattern was translated into a biotin pattern with similar resolution. Fluorescein conjugated streptavidin was patterned as demonstration. Fluorescence microscopy shows relative uniform streptavidin coverage of micron resolution and low background non-specific binding. The proposed protein patterning technique takes advantage of the high resolution of modern microelectronic fabrication. It has the potential of reaching sub-micron resolution. The biotin-streptavidin pair provides extremely specific and stable linking for protein immobilization. To show its application in biological inspired self-assembly, this technique was used successfully in the self-assembly of 20 nm streptavidin conjugated gold particles.


Sign in / Sign up

Export Citation Format

Share Document