Energy transfer in double plate system dynamics

2008 ◽  
Vol 24 (3) ◽  
pp. 331-344 ◽  
Author(s):  
Katica (Stevanović) Hedrih
2021 ◽  
pp. 136943322098273
Author(s):  
Tan Ngoc Than Cao ◽  
JN Reddy ◽  
Qui X Lieu ◽  
Xuan Vu Nguyen ◽  
Van Hai Luong

This article aims to firstly introduce a computational approach, named multi-layer moving plate method (MMPM), to dynamic analysis of viscoelastically connected infinitely long double-plate systems subjected to moving loads. The Reissner-Mindlin plate theory is utilized to describe the displacement field through the thickness of each plate, whilst quadratic serendipity shape functions are employed to represent unknown fields in finite element analyses (FEAs). The governing equations of motion of connected double-plate system are established in a moving coordinate system attached to the moving load. As a consequence, the paradigm can absolutely eradicate the update process of force vector since the applied load is taken into account as “stationary” in its coordinate system. First, several numerical examples for static, free vibration and dynamic analyses are exhibited to verify the accuracy of the proposed MMPM. Then, the influences of various parameters such as load’s velocity, damping coefficient, stiffness coefficient, and plate thickness on the dynamic responses of double-plate system are examined in great detail.


Author(s):  
R.D. Leapman ◽  
P. Rez ◽  
D.F. Mayers

Microanalysis by EELS has been developing rapidly and though the general form of the spectrum is now understood there is a need to put the technique on a more quantitative basis (1,2). Certain aspects important for microanalysis include: (i) accurate determination of the partial cross sections, σx(α,ΔE) for core excitation when scattering lies inside collection angle a and energy range ΔE above the edge, (ii) behavior of the background intensity due to excitation of less strongly bound electrons, necessary for extrapolation beneath the signal of interest, (iii) departures from the simple hydrogenic K-edge seen in L and M losses, effecting σx and complicating microanalysis. Such problems might be approached empirically but here we describe how computation can elucidate the spectrum shape.The inelastic cross section differential with respect to energy transfer E and momentum transfer q for electrons of energy E0 and velocity v can be written as


Sign in / Sign up

Export Citation Format

Share Document