Age- and direction-related adaptations of lumbar vertebral trabecular bone with respect to apparent stiffness and tissue level stress distribution

2008 ◽  
Vol 25 (1) ◽  
pp. 121-129 ◽  
Author(s):  
He Gong ◽  
Yubo Fan ◽  
Ming Zhang ◽  
Ling Qin
Author(s):  
D N Ingle ◽  
M E Porter

Abstract Since their appearance in the fossil record 34 Mya, modern cetaceans (dolphins, whales, and porpoises) have radiated into diverse habitats circumglobally, developing vast phenotypic variations among species. Traits such as skeletal morphology and ecologically-linked behaviors denote swimming activity; trade-offs in flexibility and rigidity along the vertebral column determine patterns of caudal oscillation. Here, we categorized 10 species of cetaceans (Families Delphinidae and Kogiidae; N = 21 animals) into functional groups based on vertebral centra morphology, swimming speeds, diving behavior, and inferred swimming patterns. We quantified trabecular bone mechanical properties (yield strength, apparent stiffness, and resilience) among functional groups and regions of the vertebral column (thoracic, lumbar, and caudal). We extracted 6 mm3 samples from vertebral bodies and tested them in compression in three orientations (rostrocaudal, dorsoventral, and mediolateral) at 2 mm min−1. Overall, bone from the pre-fluke/fluke boundary had the greatest yield strength and resilience, indicating that the greatest forces are translated to the tail during caudal oscillatory swimming. Group 1, composed of five shallow-diving delphinid species, had the greatest vertebral trabecular bone yield strength, apparent stiffness, and resilience of all functional groups. Conversely, Group 3, composed of two deep-diving kogiid species, had the least strong, stiff, and resilient bone, while Group 2 (three deep-diving delphinid species) exhibited intermediate values. These data suggest that species that incorporate prolonged glides during deep descents in the water column actively swim less, and place relatively smaller loads on their vertebral columns, compared with species that execute shallower dives. We found that cetacean vertebral trabecular bone properties differed from the properties of terrestrial mammals; for every given bone strength, cetacean bone was less stiff by comparison. This relative lack of material rigidity within vertebral bone may be attributed to the non-weight bearing locomotor modes of fully aquatic mammals.


2015 ◽  
Vol 44 (4) ◽  
pp. 1204-1223 ◽  
Author(s):  
He Gong ◽  
Lizhen Wang ◽  
Yubo Fan ◽  
Ming Zhang ◽  
Ling Qin

1988 ◽  
Vol 29 (6) ◽  
pp. 719-725 ◽  
Author(s):  
M. Nilsson ◽  
O. Johnell ◽  
K. Jonsson ◽  
I. Redlund-Johnell

2009 ◽  
Vol 42 (3) ◽  
pp. 249-256 ◽  
Author(s):  
X. Sherry Liu ◽  
Grant Bevill ◽  
Tony M. Keaveny ◽  
Paul Sajda ◽  
X. Edward Guo

2012 ◽  
Vol 45 ◽  
pp. S533
Author(s):  
Naoki Takano ◽  
Khairul Salleh Basaruddin ◽  
Takuya Ishimoto ◽  
Takayoshi Nakano

2015 ◽  
Vol 137 (1) ◽  
Author(s):  
Alexander Zwahlen ◽  
David Christen ◽  
Davide Ruffoni ◽  
Philipp Schneider ◽  
Werner Schmölz ◽  
...  

The local interpretation of microfinite element (μFE) simulations plays a pivotal role for studying bone structure–function relationships such as failure processes and bone remodeling. In the past μFE simulations have been successfully validated on the apparent level, however, at the tissue level validations are sparse and less promising. Furthermore, intratrabecular heterogeneity of the material properties has been shown by experimental studies. We proposed an inverse μFE algorithm that iteratively changes the tissue level Young’s moduli such that the μFE simulation matches the experimental strain measurements. The algorithm is setup as a feedback loop where the modulus is iteratively adapted until the simulated strain matches the experimental strain. The experimental strain of human trabecular bone specimens was calculated from time-lapsed images that were gained by combining mechanical testing and synchrotron radiation microcomputed tomography (SRμCT). The inverse μFE algorithm was able to iterate the heterogeneous distribution of moduli such that the resulting μFE simulations matched artificially generated and experimentally measured strains.


Sign in / Sign up

Export Citation Format

Share Document