Perturbed magnetic field of an infinite plate with a centered crack

2011 ◽  
Vol 27 (2) ◽  
pp. 259-265
Author(s):  
Fei Qin ◽  
Yang Zhang ◽  
Ya-Nan Liu
1998 ◽  
Vol 103 (A4) ◽  
pp. 6621-6631 ◽  
Author(s):  
C.-H. Lin ◽  
J. K. Chao ◽  
L. C. Lee ◽  
D. J. Wu ◽  
Y. Li ◽  
...  

2021 ◽  
Vol 26 (1) ◽  
pp. 122-134
Author(s):  
P. Pramod Kumar ◽  
Bala Siddulu Malga ◽  
Lakshmi Appidi ◽  
Sweta Matta

AbstractThe principal objective of the present paper is to know the reaction of thermal radiation and the effects of magnetic fields on a viscous dissipative free convection fluid flow past an inclined infinite plate in the presence of an induced magnetic field. The Galerkin finite element technique is applied to solve the nonlinear coupled partial differential equations and effects of thermal radiation and other physical and flow parameters on velocity, induced magnetic field, along with temperature profiles are explained through graphs. It is noticed that as the thermal radiation increases velocity and temperature profiles decrease and the induced magnetic field profiles increases.


2011 ◽  
Vol 25 (19) ◽  
pp. 2533-2542
Author(s):  
T. HAYAT ◽  
S. N. NEOSSI NGUETCHUE ◽  
F. M. MAHOMED

This investigation deals with the time-dependent flow of an incompressible viscous fluid bounded by an infinite plate. The fluid is electrically conducting under the influence of a transverse magnetic field. The plate moves with a time dependent velocity in its own plane. Both fluid and plate exhibit rigid body rotation with a constant angular velocity. The solutions for arbitrary velocity and magnetic field is presented through similarity and numerical approaches. It is found that rotation induces oscillations in the flow.


1991 ◽  
Vol 45 (3) ◽  
pp. 481-488 ◽  
Author(s):  
Z. Yoshida

There exist plasma waves that transport helicity although they do not propagate electromagnetic energy. The dispersion relations of such helicity waves are studied. The electric field of the waves is parallel to the perturbed magnetic field, and both are perpendicular to the perturbed current. In cross-field propagation, a helicity wave is decomposed into two transverse modes with different polarizations and a longitudinal part. The helicity waves are principally Alfvénic in the low-frequency limit. At high frequencies, the Faraday effect comes into the polarization.


2005 ◽  
Vol 2005 (20) ◽  
pp. 3303-3318
Author(s):  
S. K. Roychoudhuri ◽  
Nupur Bandyopadhyay

The propagation of magneto-thermoelastic disturbances in an elastic half-space caused by the application of a thermal shock on the stress-free bounding surface in contact with vacuum is investigated. The theory of thermoelasticity III proposed by Green and Naghdi is used to study the interaction between elastic, thermal, and magnetic fields. Small-time approximations of solutions for displacement, temperature, stress, perturbed magnetic fields both in the vacuum and in the half-space are derived. The solutions for displacement, temperature, stress, perturbed magnetic field in the solid consist of a dilatational wave front with attenuation depending on magneto-thermoelastic coupling and also consists of a part diffusive in nature due to the damping term present in the heat transport equation, while the perturbed field in vacuum represents a wave front without attenuation traveling with Alfv'en acoustic wave speed. Displacement and temperatures are continuous at the elastic wave front, while both the stress and the perturbed magnetic field in the half-space suffer finite jumps at this location. Numerical results for a copper-like material are presented.


1980 ◽  
Vol 20 (1) ◽  
pp. 17-26 ◽  
Author(s):  
G. Vahala ◽  
L. Vahala ◽  
J.H. Harris ◽  
G. Bateman ◽  
B.V. Waddell ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document