scholarly journals 3D Printing of Calcium Phosphate Ceramics for Bone Tissue Engineering and Drug Delivery

2016 ◽  
Vol 45 (1) ◽  
pp. 23-44 ◽  
Author(s):  
Ryan Trombetta ◽  
Jason A. Inzana ◽  
Edward M. Schwarz ◽  
Stephen L. Kates ◽  
Hani A. Awad
2007 ◽  
pp. 9-1-9-18
Author(s):  
Paul Spauwen ◽  
John Jansen ◽  
P QuintenRuhé ◽  
Joop Wolke

2005 ◽  
Vol 896 ◽  
Author(s):  
Reed Ayers ◽  
Doug Burkes ◽  
Guglielmo Gottoli ◽  
H.C. Yi ◽  
Jaque Guigné ◽  
...  

AbstractThe term combustion synthesis, or self-propagating high temperature synthesis (SHS), refers to an exothermic chemical reaction process that utilizes the heat generated by the exothermic reaction to ignite and sustain a propagating combustion wave through the reactants to produce the desired product(s). The products of combustion synthesis normally are extremely porous: typically 50 percent of theoretical densityAdvantages of combustion synthesis over traditional processing routes, e.g., sintering, in the production of advanced materials such as ceramics, intermetallic compounds and composites include process economics, simplicity of operation, and low energy requirements. However, the high exothermicity and rapid combustion propagation rates necessitate a high degree of control of these reactions.One research area being conducted in the Institute for Space Resources (ISR) at the Colorado School of Mines (CSM) is the application of combustion synthesis (SHS) to synthesize advanced, engineered porous multiphase/heterogeneous calcium phosphate (HCaP), NiTi, NiTi-TiC, TiB-Ti, TiC-Ti for bone tissue engineering and drug delivery systems. Such material systems require a complex combination of properties that can be truly classified as multi-functional materials. The range of properties includes: an overall porosity of 40-60% with a pore size of 200-500 μm; mechanical properties (compression strength and Young’s modulus) that match those of natural bone to avoid ‘stress shielding’; and a surface chemistry that is capable of facilitating bone growth and mineralization.The paper will discuss the synthesis of porous multiphase/heterogeneous calcium phosphate (HCaP), NiTi, NiTi-TiC, TiB-Ti, TiC-Ti for bone tissue engineering and drug delivery systems.


2020 ◽  
Vol 20 (12) ◽  
pp. 2000256
Author(s):  
Jae Eun Jeong ◽  
Shin Young Park ◽  
Ji Youn Shin ◽  
Ji Min Seok ◽  
June Ho Byun ◽  
...  

2010 ◽  
Vol 434-435 ◽  
pp. 617-619
Author(s):  
Qing Feng Zan ◽  
Yao Cong Han ◽  
Li Min Dong ◽  
Chen Wang ◽  
Jie Mo Tian

Adding whiskers to ceramic was a way that has been used to strengthen the ceramics matrix. For porous materials, strength of pore walls was an important factor for strength of the whole materials. Porous calcium phosphate ceramics were always used as scaffolds of bone tissue engineering because of their biocompatible and osteoconductibility. In this work, HA whiskers were born in the porous -TCP ceramic during in situ procedure. The HA whiskers with about 2m for length and 100nm for diameter were observed from SEM photographs of as-fabricated porous HA ceramics, and the phase content was determined by XRD.


2016 ◽  
Vol 7 ◽  
pp. 1794-1799 ◽  
Author(s):  
Aleksey A Egorov ◽  
Alexander Yu Fedotov ◽  
Anton V Mironov ◽  
Vladimir S Komlev ◽  
Vladimir K Popov ◽  
...  

We demonstrate a relatively simple route for three-dimensional (3D) printing of complex-shaped biocompatible structures based on sodium alginate and calcium phosphate (CP) for bone tissue engineering. The fabrication of 3D composite structures was performed through the synthesis of inorganic particles within a biopolymer macromolecular network during 3D printing process. The formation of a new CP phase was studied through X-ray diffraction, Fourier transform infrared spectroscopy and scanning electron microscopy. Both the phase composition and the diameter of the CP particles depend on the concentration of a liquid component (i.e., the “ink”). The 3D printed structures were fabricated and found to have large interconnected porous systems (mean diameter ≈800 μm) and were found to possess compressive strengths from 0.45 to 1.0 MPa. This new approach can be effectively applied for fabrication of biocompatible scaffolds for bone tissue engineering constructions.


Sign in / Sign up

Export Citation Format

Share Document