liquid component
Recently Published Documents


TOTAL DOCUMENTS

73
(FIVE YEARS 31)

H-INDEX

9
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Cesar Portilla ◽  
Javier Moreno

Abstract Drilling fluid (mud) invasion occurs when the liquid component of the fluid (mud filtrate) invades porous and permeable formations caused by the differential pressure between the wellbore and formation fluids. Changes to the fluid distribution near the wellbore region affects logging tool response, especially those with shallow depths of investigation. The Arab formation in UAE exhibits different degrees of invasion primarily observed in the nuclear and resistivity measurements. This study utilizes tool physics, rock properties, logging time information, and drilling fluid properties, to model invasion corrected log responses and estimate accurate petrophysical properties. Drilling mud filtrate invasion is observed significantly in all wells drilled in the Arab formation in UAE, affecting both wireline and LWD logging tools. Most of the pilot vertical wells appear to be at residual saturations near the wellbore, where drilling mud filtrate invaded deep into the formation and the radial zones near the wellbore are expected to be completely flushed by the filtrate. Drilling mud invasion in the laterals appears to happen early during the drilling phase affecting LWD tool as well, and the measurement becomes function of the time after drilled, affecting mostly nuclear measurements (density and neutron). Clear understanding of the mud filtrate invasion is required to obtain valid petrophysical interpretations. To characterize these effects, two invasion indexes are estimated and used as inputs for the petrophysical model. Results are then validated with the use of Nuclear Modeling and Resistivity Inversion by the use of the SNUPAR (McKeon et al, 1988)(Edmundson, H., and Raymer, L.L., 1979)(Wiley, R., and Patchett, J.G., 1990) and UTAPWeLS (Jesus and Carlos, 2009) (Alberto and Carlos, 2010) (Alberto, Carlos and Bill, 2010) (Shaaban, David, and Carlos, 2017) (David, Joaquin and Carlos, 2019). Individual models are created to evaluate pilot vertical wells and horizontal laterals, as well as pure theoretical models are put forward to demonstrate the importance of performing corrections for mud filtrate invasion, showing the differences particularly in the nuclear responses.


Materials ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6254
Author(s):  
Wojciech Eliasz ◽  
Beata Czarnecka ◽  
Anna Surdacka

(1) Background: Apical extrusion of debris is an example of a complication that may arise during root canal treatment, and it has been proven to be an unavoidable occurrence during endodontic treatment by numerous authors. Even though it may not hinder the long-term outcome of treatment, it may lead directly to increased levels of postoperative pain and, therefore, lower levels of patient acceptance and satisfaction. The aim of the study was to assess the weight of apically extruded debris during root canal preparation with instruments that use different movement kinematics (rotary, reciprocating, and adaptive motion); (2) Methods: The study was performed using the Myers and Montgomery model. Sixty human premolar teeth were inserted into preweighed Eppendorf tubes and randomly classified into three groups. After manual glide-path preparation, teeth in each group were instrumented to working length set 1 mm short of the anatomical apex using the standard sequence provided by the manufacturers (for Group 1: ProTaper Next X1 & X2; for Group 2: WaveOne Gold Primary, for Group 3: Twisted Files SM1-SM3). Root canals were irrigated with 1 mL of 0.9% NaCl solution between each file insertion. The tubes with collected debris were stored in an incubator at 70 °C for 5 days in order to evaporate the liquid component. Measurement of the weight of extruded debris was performed by subtracting the preinstrumentation from the postinstrumentation weight of the tubes. The results were analyzed with Kruskal–Wallis ANOVA, with significance level set at 0.05; (3) Results: The weight of extruded debris was 0.337 mg (SD = 0.148) for Group 1, 0.305 mg (SD = 0.201) for Group 2, and 0.348 mg (SD = 0.135) for Group 3. (4) Conclusions: Engine-driven root canal preparation with the use of instruments ProTaper Next, WaveOne Gold and Twisted Files that use different movement kinematics (rotary, reciprocating, and adaptive motion) was associated with apical extrusion of debris to a similar extent.


Author(s):  
E. Kosenko

Polymer and composite materials (PCMs) are widely used in various industries for production of small but complex parts and large-sized body parts subjected to significant loads. The production of more critical parts from PCM has led to the need to develop new compositions, structures and technologies for molding composites. The manufacturing technology of PCMs with a hybrid matrix is presented, one of the components of which retains its "liquid" state after the molding of the products, and the second is completely solid. In the resulting composite, the “liquid” components form an independent phase and together with the main binder material, the PCMs represent a hybrid matrix. The results of dynamic mechanical analysis (DMA) of basalt plastics with hybrid matrices, in which the composition of the “liquid” component are anaerobic technical wax and organosilicon polymer materials, are presented. DMA is performed on samples of two types: № 1 - samples with a low content of "liquid" components in the matrix and № 2 - samples with a high content of "liquid" components in the matrix. According to the results of the tests carried out, the best characteristics among PCMs with various types of hybrid matrices are possessed by samples with an organosilicon polymer material in the matrix


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hassan Waqas ◽  
Umar Farooq ◽  
Aqsa Ibrahim ◽  
M. Kamran Alam ◽  
Zahir Shah ◽  
...  

AbstractNanofluids has broad applications such as emulsions, nuclear fuel slurries, molten plastics, extrusion of polymeric fluids, food stuffs, personal care products, shampoos, pharmaceutical industries, soaps, condensed milk, molten plastics. A nanofluid is a combination of a normal liquid component and tiny-solid particles, in which the nanomaterials are immersed in the liquid. The dispersion of solid particles into yet another host fluid will extremely increase the heat capacity of the nanoliquid, and an increase of heat efficiency can play a significant role in boosting the rate of heat transfer of the host liquid. The current article discloses the impact of Arrhenius activation energy in the bioconvective flow of Burger nanofluid by an inclined wall. The heat transfer mechanism of Burger nanofluid is analyzed through the nonlinear thermal radiation effect. The Brownian dispersion and thermophoresis diffusions effects are also scrutinized. A system of partial differential equations are converted into ordinary differential equation ODEs by using similarity transformation. The multi order ordinary differential equations are reduced to first order differential equations by applying well known shooting algorithm then numerical results of ordinary equations are computed with the help of bvp4c built-in function Matlab. Trends with significant parameters via the flow of fluid, thermal, and solutal fields of species and the area of microorganisms are controlled. The numerical results for the current analysis are seen in the tables. The temperature distribution increases by rising the temperature ratio parameter while diminishes for a higher magnitude of Prandtl number. Furthermore temperature-dependent heat source parameter increases the temperature of fluid. Concentration of nanoparticles is an decreasing function of Lewis number. The microorganisms profile decay by an augmentation in the approximation of both parameter Peclet number and bioconvection Lewis number.


Author(s):  
V. A. Afanasiev ◽  
A. N. Ostrikov ◽  
I. S. Bogomolov ◽  
P. V. Filiptsov ◽  
L. N. Frolova

The technology of production of compound feeds for agricultural (pigs) and unproductive (dogs, cats) animals, as well as for fur-bearing animals (minks, arctic foxes, sables) and valuable fish (sturgeon, trout, etc.), in which the replacement of expensive components of animal origin (fish meal, meat and bone meal, blood meal, offal), for extruded vegetable high-protein components (soy, sunflower or rapeseed meal, lupine, peas, soy) is carried out. The use of vacuum spraying of thermolabile liquid components (amino acids, protein-vitamin-mineral additives, vitamins, fats) on the surface of extruded pellets will allow you to obtain highly digestible feed. The kinetic regularities of the studied processes of humidification and steaming, extrusion, drying/cooling and draining are determined, and their rational modes are revealed. The technological scheme of the line for the production of highly digestible compound feeds has been developed, which includes the following equipment: hopper; extruder; dryer-cooler; liquid component injection plant, draining machine; conveyor and finished product hopper. According to the technical characteristics (overall dimensions, weight, occupied area, drive power, uniformity of application of fat on the surface of granules), the manufactured coating machine and the liquid component injection unit exceed the best world analogues. The technology of vacuum mixing with the introduction of liquid components will ensure their uniform distribution over the entire volume, reduce the duration of mixing, which will increase the productivity of the vacuum mixer and reduce energy consumption. The developed technology and promising types of technological equipment (mixer, extruder, vacuum sprayer, dryer-cooler) will make it possible to obtain highly digestible feed of a new generation with a protein content of 60 %, fat content of 40 %, with the introduction of growth stimulants, biologically active additives. An increase in the protein and fat complex will increase the digestibility of compound feeds by 10-12 %, increase weight gain by 10-12 % and reduce feed conversion by 15 %.


2021 ◽  
Vol 23 (1) ◽  
pp. 143-152
Author(s):  
Dmitriy N. Maistrenko ◽  
Alexander S. Ivanov ◽  
Mikhail I. Generalov ◽  
Dmitry N. Nikolaev ◽  
Andrey A. Stanzhevsky ◽  
...  

The sequence of determining determination of the critical value of blood pressure for the occurrence of dissection of atherosclerotic intima of the internal carotid artery according to the experimental study. Atherosclerotic lesion of the brachiocephalic arteries was modeled on a vascular silicone phantom of the carotid arteries, in which the surgical material (intact annular area of atherosclerotic intima with plaque), obtained after eversion endarterectomy in a patient with atherosclerotic lesions, was placed and fixed in the region of the mouth of the internal carotid artery. A total of 30 models were created. To determine the critical values of the pressure on the intima with the plaque, at which it ruptures, balloon catheters were used, controlling the pressure with a manometer. The results were compared with the preoperative data of ultrasound and computed tomography examinations of patients. Dissection of the intima in the area of the plaque occurred in 6 cases at a pressure of 150180 mm Hg; in 9 cases at 180200 mm Hg, in 3 cases at a pressure of more than 200 mmHg, in 12 when exposed to more than 300 mm Hg. All patients, whose intima ruptured at a pressure of less than 200 mm Hg, had a fluid component of the plaque on preoperative examination, and in 6 patients, the critical pressure on the plaque was 150 mm Hg., there was also a thinned "cover" of the plaque. In the rest of the cases, the plaques were stable without a liquid component. Dissection of the intima in these cases did not occur when the exposure value was more than 300 mm Hg. The presence of a fluid component in an atherosclerotic plaque of the carotid artery in combination with a thinned cover of the plaque indicates the extreme danger of its destruction and embolism during a hypertensive crisis. The degree of stenosis of the carotid artery was found to be a less significant risk factor for unstable plaque rupture than the presence of a fluid component.


Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2137
Author(s):  
Lubomir Medvecky ◽  
Maria Giretova ◽  
Radoslava Stulajterova ◽  
Lenka Luptakova ◽  
Tibor Sopcak

A modified one-step process was used to prepare tetracalcium phosphate/monetite/calcium sulfate hemihydrate powder cement mixtures (CAS). The procedure allowed the formation of monetite and calcium sulfate hemihydrate (CSH) in the form of nanoparticles. It was hypothesized that the presence of nanoCSH in small amounts enhances the in vitro bioactivity of CAS cement in relation to osteogenic gene markers in mesenchymal stem cells (MSCs). The CAS powder mixtures with 15 and 5 wt.% CSH were prepared by milling powder tetracalcium phosphate in an ethanolic solution of both orthophosphoric and sulfuric acids. The CAS cements had short setting times (around 5 min). The fast setting of the cement samples after the addition of the liquid component (water solution of NaH2PO4) was due to the partial formation of calcium sulfate dihydrate and hydroxyapatite before soaking in SBF with a small change in the original phase composition in cement powder samples after milling. Nanocrystalline hydroxyapatite biocement was produced by soaking of cement samples after setting in simulated body fluid (SBF). The fast release of calcium ions from CAS5 cement, as well as a small rise in the pH of SBF during soaking, were demonstrated. After soaking in SBF for 7 days, the final product of the cement transformation was nanocrystalline hydroxyapatite. The compressive strength of the cement samples (up to 30 MPa) after soaking in simulated body fluid (SBF) was comparable to that of bone. Real time polymerase chain reaction (RT-PCR) analysis revealed statistically significant higher gene expressions of alkaline phosphatase (ALP), osteonectin (ON) and osteopontin (OP) in cells cultured for 14 days in CAS5 extract compared to CSH-free cement. The addition of a small amount of nanoCSH (5 wt.%) to the tetracalcium phosphate (TTCP)/monetite cement mixture significantly promoted the over expression of osteogenic markers in MSCs. The prepared CAS powder mixture with its enhanced bioactivity can be used for bone defect treatment and has good potential for bone healing.


2021 ◽  
Author(s):  
Rampueng Kawphoy ◽  
Phanat Thatmali

Abstract The objective of this study was to improve the accuracy of condensate gas ratio (CGR) prediction in the Pailin and Moragot areas. Conventional method to predict liquid component reserves used only long-life condensate gas ratio (long-life CGR) from near-by production platform(s). The long-life CGR data are available in the mature production platforms which commonly takes 1-2 years to observe the decline trend so that there is no available data in the new drilled area and non-production area. This might cause inaccurate prediction of liquid reserves in the future platform especially in the platform locates far away from the mature production area. Multiple data which are basin modeling, geochemical data, drill-stem test, and batch-level production were analyzed and integrated to improve the accuracy of CGR prediction and understand geological reasons of high or low liquid production platform. These data can improve the confident level for CGR estimation in the non-production area and help identify potentially high liquid production platforms. The results show that the high liquid production in Pailin and Moragot fields related with the differentiation of source rock and migration process. There are three (3) separated trends in Pailin field and two (2) trends in Moragot field using geochemical data and basin modeling data. The local DST data has been integrated to confirm the extent of potentially high liquid production in several future platforms which locates in non-production area. Also, the updated production data has been re-visited to estimate the new CGR for the project located near-by production platform.


2021 ◽  
Author(s):  
Enrique Rayo ◽  
Giada Ferrari ◽  
Judith Neukamm ◽  
Gülfirde Akgül ◽  
Abagail M. Breidenstein ◽  
...  

AbstractMuseum and medically fixed material are valuable samples for the study of historical soft tissues and represent a pathogen-specific source for retrospective molecular investigations. However, current methods for the molecular analysis are inherently destructive, posing a dilemma between performing a study with the available technology thus damaging the sample - or conserving the material for future investigations. Here we present an unprecedented non-destructive alternative that facilitates the genetic analysis of fixed wet tissues while avoiding tissue damage. We extracted DNA from the fixed tissues as well as their embedding fixative solution, to quantify the DNA that was transferred to the liquid component. Our results prove that human ancient DNA can be retrieved from the fixative material of stored medical specimens and provide new options for the sampling of valuable curated collections.Method summaryWe compared the metagenomic content of historical tissues and their embedding liquid to retrieve DNA from the host and specified pathogens based on the diagnosis of the sample. We applied ancient DNA research techniques, including in-solution hybridization capture with DNA baits for human mitochondrial DNA, Mycobacterium tuberculosis, Mycobacterium leprae, and Treponema pallidum.


2021 ◽  
Author(s):  
Hassan Waqas ◽  
Umar Farooq ◽  
Aqsa Ibrahim ◽  
Zahir Shah ◽  
Poom Kumam

Abstract A nanofluid is a combination of a normal liquid component and tiny-solid particles, in which the nanomaterials are immersed in the liquid. The dispersion of solid particles into yet another host fluid will extremely increase the heat capacity of the nanoliquids, and an increase of heat efficiency can play a significant role in boosting the rate of heat transfer of the host liquid. The current article discloses the impact of Arrhenius activation energy in the bioconvective flow of Burger nanofluid by an inclined wall. The heat transfer mechanism of Burger nanofluid is analyzed through the nonlinear thermal radiation effect. The Brownian dispersion and thermophoresis diffusions effects are also scrutinized. Established partial differential equation expressions are updated by a similarity transformation of the ordinary differential equation ODE. The numerical results are given by the built-in bvp4c function Matlab also applies the Labotto-IIIa formula for the shooting scheme. Trends with significant parameters via the flow of fluid, thermal, and solutal fields of species and the area of microorganisms are controlled. The numerical results for the current analysis are seen in the tables.


Sign in / Sign up

Export Citation Format

Share Document