scholarly journals Analysis of Drug Effects on iPSC Cardiomyocytes with Machine Learning

2020 ◽  
Vol 49 (1) ◽  
pp. 129-138
Author(s):  
Martti Juhola ◽  
Kirsi Penttinen ◽  
Henry Joutsijoki ◽  
Katriina Aalto-Setälä

AbstractPatient-specific induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) offer an attractive experimental platform to investigate cardiac diseases and therapeutic outcome. In this study, iPSC-CMs were utilized to study their calcium transient signals and drug effects by means of machine learning, a central part of artificial intelligence. Drug effects were assessed in six iPSC-lines carrying different mutations causing catecholaminergic polymorphic ventricular tachycardia (CPVT), a highly malignant inherited arrhythmogenic disorder. The antiarrhythmic effect of dantrolene, an inhibitor of sarcoplasmic calcium release, was studied in iPSC-CMs after adrenaline, an adrenergic agonist, stimulation by machine learning analysis of calcium transient signals. First, beats of transient signals were identified with our peak recognition algorithm previously developed. Then 12 peak variables were computed for every identified peak of a signal and by means of this data signals were classified into different classes corresponding to those affected by adrenaline or, thereafter, affected by a drug, dantrolene. The best classification accuracy was approximately 79% indicating that machine learning methods can be utilized in analysis of iPSC-CM drug effects. In the future, data analysis of iPSC-CM drug effects together with machine learning methods can create a very valuable and efficient platform to individualize medication in addition to drug screening and cardiotoxicity studies.

Author(s):  
Minsik Oh ◽  
Sungjoon Park ◽  
Sun Kim ◽  
Heejoon Chae

Abstract Gene expressions are subtly regulated by quantifiable measures of genetic molecules such as interaction with other genes, methylation, mutations, transcription factor and histone modifications. Integrative analysis of multi-omics data can help scientists understand the condition or patient-specific gene regulation mechanisms. However, analysis of multi-omics data is challenging since it requires not only the analysis of multiple omics data sets but also mining complex relations among different genetic molecules by using state-of-the-art machine learning methods. In addition, analysis of multi-omics data needs quite large computing infrastructure. Moreover, interpretation of the analysis results requires collaboration among many scientists, often requiring reperforming analysis from different perspectives. Many of the aforementioned technical issues can be nicely handled when machine learning tools are deployed on the cloud. In this survey article, we first survey machine learning methods that can be used for gene regulation study, and we categorize them according to five different goals: gene regulatory subnetwork discovery, disease subtype analysis, survival analysis, clinical prediction and visualization. We also summarize the methods in terms of multi-omics input types. Then, we explain why the cloud is potentially a good solution for the analysis of multi-omics data, followed by a survey of two state-of-the-art cloud systems, Galaxy and BioVLAB. Finally, we discuss important issues when the cloud is used for the analysis of multi-omics data for the gene regulation study.


Author(s):  
M.A. Basyrov ◽  
◽  
A.V. Akinshin ◽  
I.R. Makhmutov ◽  
Yu.D. Kantemirov ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document