scholarly journals Identification and Modelling of the In-Plane Reinforcement Orientation Variations in a CFRP Laminate Produced by Manual Lay-Up

2017 ◽  
Vol 25 (3) ◽  
pp. 647-660 ◽  
Author(s):  
Yves Davila ◽  
Laurent Crouzeix ◽  
Bernard Douchin ◽  
Francis Collombet ◽  
Yves-Henri Grunevald
2010 ◽  
Vol 133-134 ◽  
pp. 917-922 ◽  
Author(s):  
José Sena-Cruz ◽  
Joaquim Barros ◽  
Mário Coelho

Recently, laminates of multi-directional carbon fiber reinforced polymers (MDL-CFRP) have been developed for Civil Engineering applications. A MDL-CFRP laminate has fibers in distinct directions that can be arranged in order to optimize stiffness and/or strength requisites. These laminates can be conceived in order to be fixed to structural elements with anchors, resulting high effective strengthening systems. To evaluate the strengthening potentialities of this type of laminates, pullout tests were carried out. The influence of the number of anchors, their geometric location and the applied pre-stress are analyzed. The present work describes the carried-out tests and presents and analyzes the most significant obtained results.


2021 ◽  
Vol 237 ◽  
pp. 112072
Author(s):  
Paulo Sergio Mota dos Santos Junior ◽  
Andre Gonçalves Malcher da Silva ◽  
Denio Ramam Carvalho de Oliveira

2009 ◽  
Vol 35 (4) ◽  
pp. 165-174 ◽  
Author(s):  
Yoshiyasu HIRANO ◽  
Shingo KATSUMATA ◽  
Yutaka IWAHORI ◽  
Akira TODOROKI

Author(s):  
George Currie ◽  
Dustin Spayde ◽  
Oliver Myers

The overall purpose of this research is to characterize the affects of imbedding magnetostrictive particles (MSP) in a CFRP laminate for the purpose of nondestructive evaluation. This paper details an investigation using an analytical and experimental approach. At the time of this publication, both the analytical and experimental investigations are in a preliminary stage and the results have not yet converged. The analytical investigation utilizes fundamental equations for the magnetomechanical properties of the MSP and classical laminate theory for the strength and stiffness of the CFRP laminate to obtain a model of the combination. It is assumed that the magnetomechanical relationship of the MSP layer is a function of the prestress acting on the layer. This relationship is nonlinear in nature but is broken down into a number of linear sections to facilitate analysis. This prestress acting on the MSP layer is a result of the CFRP laminate’s stiffness resisting the induced strain of the MSP layer. Classical laminate theory is used to obtain the value of the prestress as a function of this induced strain. As would be expected, this analysis becomes an iterative process. The induced strain is calculated based on a prestress level of zero. This strain is then used to calculate the amount of stress in the CFRP laminate which becomes the prestress value, and the process is repeated until convergence is reached. Unidirectional CFRP laminates are used in this analysis. The experimental approach involved testing a collection of composite beams imbedded with MSP using a scanner that surrounded the beams. The scanner was composed of an excitation coil and a sensing coil. A detailed schematic of the scanner is included in the paper showing the slide along which the scanner apparatus moved, and the sensing coil surrounded by the excitation coil. The samples used in this analysis were constructed from unidirectional prepreg carbon fiber with varying internal delaminations, ply orientations, and number of plies. A program was constructed that allowed the user to control the signal being output to the excitation coil as well as record data from the sensing coil. The results presented in this paper are not final and will be used to create a foundation for continuation of this research.


Sign in / Sign up

Export Citation Format

Share Document