Chromium(VI) removal using in-situ nitrogenized activated carbon prepared from Brewers’ spent grain

Adsorption ◽  
2017 ◽  
Vol 24 (2) ◽  
pp. 147-156 ◽  
Author(s):  
S. R. H. Vanderheyden ◽  
K. Vanreppelen ◽  
J. Yperman ◽  
R. Carleer ◽  
S. Schreurs
2020 ◽  
Vol 4 (3) ◽  
pp. 87
Author(s):  
Francisco J. González ◽  
Andreina Montesinos ◽  
Javier Araujo-Morera ◽  
Raquel Verdejo ◽  
Mario Hoyos

Composite materials of poly(3,4-ethylenedioxythiophene) (PEDOT)/activated carbon (AC) were prepared by ‘in-situ’ polymerization and subsequently deposited by spray-coating onto a flexible electrolyte prepared in our laboratories. Two activated carbons were tested: a commercial activated carbon and a lab-made activated carbon from brewer’s spent grain (BSG). The porous and spongy structure of the composite increased the specific surface area, which helps to enhance the energy storage density. This procedure to develop conductive composite materials using AC prepared from biowaste has the potential to be implemented for the preparation of polymer-based conductive inks for further applications as electrodes in pseudocapacitors.


Author(s):  
Yimin Deng ◽  
Jonathan Peter Kyle Seville ◽  
Sarah Dawn Bell ◽  
Andrew Ingram ◽  
Huili Zhang ◽  
...  

2021 ◽  
pp. 125995
Author(s):  
So Yeon Yoon ◽  
Seok Byum Jang ◽  
Kien Tiek Wong ◽  
Hyeseong Kim ◽  
Min Ji Kim ◽  
...  

2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Gopal Krishna Gupta ◽  
Pinky Sagar ◽  
Sumit Kumar Pandey ◽  
Monika Srivastava ◽  
A. K. Singh ◽  
...  

AbstractHerein, we demonstrate the fabrication of highly capacitive activated carbon (AC) using a bio-waste Kusha grass (Desmostachya bipinnata), by employing a chemical process followed by activation through KOH. The as-synthesized few-layered activated carbon has been confirmed through X-ray powder diffraction, transmission electron microscopy, and Raman spectroscopy techniques. The chemical environment of the as-prepared sample has been accessed through FTIR and UV–visible spectroscopy. The surface area and porosity of the as-synthesized material have been accessed through the Brunauer–Emmett–Teller method. All the electrochemical measurements have been performed through cyclic voltammetry and galvanometric charging/discharging (GCD) method, but primarily, we focus on GCD due to the accuracy of the technique. Moreover, the as-synthesized AC material shows a maximum specific capacitance as 218 F g−1 in the potential window ranging from − 0.35 to + 0.45 V. Also, the AC exhibits an excellent energy density of ~ 19.3 Wh kg−1 and power density of ~ 277.92 W kg−1, respectively, in the same operating potential window. It has also shown very good capacitance retention capability even after 5000th cycles. The fabricated supercapacitor shows a good energy density and power density, respectively, and good retention in capacitance at remarkably higher charging/discharging rates with excellent cycling stability. Henceforth, bio-waste Kusha grass-derived activated carbon (DP-AC) shows good promise and can be applied in supercapacitor applications due to its outstanding electrochemical properties. Herein, we envision that our results illustrate a simple and innovative approach to synthesize a bio-waste Kusha grass-derived activated carbon (DP-AC) as an emerging supercapacitor electrode material and widen its practical application in electrochemical energy storage fields.


2021 ◽  
pp. 111813
Author(s):  
D. Prabu ◽  
P. Senthil Kumar ◽  
B. Senthil Rathi ◽  
S. Sathish ◽  
K. Vijai Anand ◽  
...  

Sensors ◽  
2017 ◽  
Vol 17 (11) ◽  
pp. 2461 ◽  
Author(s):  
Li-Chun Wu ◽  
Teh-Hua Tsai ◽  
Man-Hai Liu ◽  
Jui-Ling Kuo ◽  
Yung-Chu Chang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document