scholarly journals ‘In-Situ’ Preparation of Carbonaceous Conductive Composite Materials Based on PEDOT and Biowaste for Flexible Pseudocapacitor Application

2020 ◽  
Vol 4 (3) ◽  
pp. 87
Author(s):  
Francisco J. González ◽  
Andreina Montesinos ◽  
Javier Araujo-Morera ◽  
Raquel Verdejo ◽  
Mario Hoyos

Composite materials of poly(3,4-ethylenedioxythiophene) (PEDOT)/activated carbon (AC) were prepared by ‘in-situ’ polymerization and subsequently deposited by spray-coating onto a flexible electrolyte prepared in our laboratories. Two activated carbons were tested: a commercial activated carbon and a lab-made activated carbon from brewer’s spent grain (BSG). The porous and spongy structure of the composite increased the specific surface area, which helps to enhance the energy storage density. This procedure to develop conductive composite materials using AC prepared from biowaste has the potential to be implemented for the preparation of polymer-based conductive inks for further applications as electrodes in pseudocapacitors.

2019 ◽  
Vol 9 (16) ◽  
pp. 3371 ◽  
Author(s):  
Francisco González ◽  
Pilar Tiemblo ◽  
Mario Hoyos

Composite materials of conjugated polymers/cellulose were fabricated by incorporating different polythiophene-derivative polymers: Poly(3,4-ethylenedioxythiophene) (PEDOT) and an alkylated derivative of poly(3,4-propylenedioxythiophene) (PProDOT). These conjugated polythiophenes were deposited by casting or spray coating methodologies onto three different cellulose substrates: Conventional filters papers as cellulose acetate, cellulose grade 40 Whatman® and cellulose membranes prepared from cellulose microfibers. The preparation of composite materials was carried out by two methodologies: (i) by employing in-situ polymerization of 3,4-ethylenedioxithiophene (EDOT) or (ii) by depositing solutions of poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) or lab-synthetized PProDOT. Composite materials were studied in terms of electrical conductivity and surface morphology assessed by impedance spectroscopy, surface conductivity, SEM, and 3D optical profilometry. In-situ composite materials prepared by spray coating using iron trifluoromethane sulfonate as oxidizing agent can be handled and folded as the original cellulose membranes displaying a surface conductivity around 1 S∙cm−1. This versatile procedure to prepare conductive composite materials has the potential to be implemented in flexible electrodes for energy storage applications.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Zatil Amali Che Ramli ◽  
Nilofar Asim ◽  
Wan N. R. W. Isahak ◽  
Zeynab Emdadi ◽  
Norasikin Ahmad-Ludin ◽  
...  

This study involves the investigation of altering the photocatalytic activity of TiO2using composite materials. Three different forms of modified TiO2, namely, TiO2/activated carbon (AC), TiO2/carbon (C), and TiO2/PANi, were compared. The TiO2/carbon composite was obtained by pyrolysis of TiO2/PANi prepared by in situ polymerization method, while the TiO2/activated carbon (TiO2/AC) was obtained after treating TiO2/carbon with 1.0 M KOH solution, followed by calcination at a temperature of 450°C. X-ray powder diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared (FTIR), thermogravimetric analysis (TG-DTA), Brunauer-Emmet-Teller (BET), and UV-Vis spectroscopy were used to characterize and evaluate the prepared samples. The specific surface area was determined to be in the following order: TiO2/AC > TiO2/C > TiO2/PANi > TiO2(179 > 134 > 54 > 9 m2 g−1). The evaluation of photocatalytic performance for the degradation of methylene blue under UV light irradiation was also of the same order, with 98 > 84.7 > 69% conversion rate, which is likely to be attributed to the porosity and synergistic effect in the prepared samples.


2013 ◽  
Vol 562-565 ◽  
pp. 1137-1142
Author(s):  
Hui Xia Feng ◽  
Bing Wang ◽  
Lin Tan ◽  
Na Li Chen

We prepared the polyaniline@polypyrrole (PAn@PPy) conductive composite by a novel method. The struction like Pre-prepared PAn as the core and PPy as the shell for the composite has been prepared by in-situ polymerization. The PAn@PPy conductive composite presents an electrical conductivity of 12.5 S/cm, which is much higher than pure PAn. The synthesized polymer composites are characterized by Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM) and Thermogravimetric analysis (TG). The results indicated that PPy successfully grafted on PAn and the heat resistance of nanocomposite is remarkably increased.


2011 ◽  
Vol 70 ◽  
pp. 231-236 ◽  
Author(s):  
Takenobu Sakai ◽  
Tomohiko Gushiken ◽  
Jun Koyanagi ◽  
Rolando Rios-Soberanis ◽  
Tomoki Masuko ◽  
...  

In the Waterworks Bureau, the activated carbon has been used for filtering water. After the life service of activated carbon, it is normally disposed. This work focuses on the processing of a composite material in order to recycle these wasted carbon particles. These activated carbons were used for the filler of composite materials, and a composite with carbon contents of 10% ~ 60% was manufactured and characterized. They exhibited electroconductive behavior because of the carbon particles used as fillers. The electroconductivity have an intimate relationship with the strain of the material. However, because of the composite viscoelasticity, the electroconductivity presented changes by their stress relaxation behavior with the same strain. In this study, it was revealed the relationship between the viscoelasticity and the electroconductivity of recycled activated carbon composites.


2013 ◽  
Vol 8 (1-2) ◽  
pp. 69-80 ◽  
Author(s):  
S. V. Pol’shchikov ◽  
P. M. Nedorezova ◽  
A. N. Klyamkina ◽  
V. G. Krashenninikov ◽  
A. M. Aladyshev ◽  
...  

Author(s):  
A.A. Zdanovich ◽  
◽  
M.A. Matsko ◽  
A.V. Melezhik ◽  
A.G. Tkachev ◽  
...  

The data on the preparation of composite materials containing polyethylene and multi-walled carbon nanotubes (MWCNTs) of the Taunit brand are presented. To obtain these composites by in situ polymerization, a catalytic system formed by the interaction of an organomagnesium compound and TiCl4 on the surface of nanotubes was used. The catalyst fixed on the MWCNT surface has a high activity in ethylene polymerization and allows to obtain a polymer with different molecular weight. The data on the formation of a polymer on the MWCNT surface and the morphology of composites formed on various Taunit samples are presented.


Adsorption ◽  
2017 ◽  
Vol 24 (2) ◽  
pp. 147-156 ◽  
Author(s):  
S. R. H. Vanderheyden ◽  
K. Vanreppelen ◽  
J. Yperman ◽  
R. Carleer ◽  
S. Schreurs

2017 ◽  
Vol 14 (2) ◽  
pp. 204-211 ◽  
Author(s):  
Fatima Zeggai ◽  
Mohammed Belbachir ◽  
Aicha Hachmaoui

In this work we report a simple way for the conducting polymer nanocomposites synthesis using on algerian hydrophilic natural Montmorillonite (MMT) nanoclay named Maghnite (Mag) as dopant. The electrochemical properties study of the following conducting polymers: poly(4-aminobenzylamine) (P4ABA) and polyaniline (PANI) nanocomposites with copper maghnite (Mag-Cu) were successfully prepared by In-Situ polymerization, in presence of inorganic nanolayers of clay, and oxidizing agent ammonium persulfate. The synthesis of copolymers was developed at different feed mole fractions of monomer. The products were characterized by the Fourier transform Infrared (FT-IR), the ultraviolet-visible (UV–vis) spectroscopies and X-ray diffraction (XRD). The results showed that the in-situ polymerization produced real nanocomposites containing aniline and 4-aminobenzylamine units.


Sign in / Sign up

Export Citation Format

Share Document