scholarly journals Cladocera paleocommunity to disentangle the impact of anthropogenic and climatic stressors on a deep subalpine lake ecosystem (Lake Iseo, Italy)

2021 ◽  
Author(s):  
Barbara Leoni ◽  
Martina Patelli ◽  
Veronica Nava ◽  
Monica Tolotti

AbstractIn big lakes with strong anthropogenic pressure, it is usually difficult to disentangle the impacts of climate variability from those driven by eutrophication. The present work aimed at the reconstruction of change in the species distribution and density of subfossil Cladocera in Lake Iseo (Italy) in relation to climate and anthropogenic pressure. We related subfossil Cladocera species composition and density in an 80-cm sediment core collected in the pelagic zone of Lake Iseo to long-term temperature trends and phosphorus concentration inferred by diatoms frustules. The Cladocera remains detected in Lake Iseo sediment reflected the species composition and density of modern pelagic Cladocera assemblages. Cladocera rapidly respond to environmental change, and that climate change combined with eutrophication can induce changes in community composition and species density. At the beginning of twentieth century, when global warming was not yet so accentuated, the nutrient increase in water resulted as the principal driver in determining the long-term development of plankton communities and pelagic food web structure. Moreover, catchment-related processes may decisively affect both species composition and density of the lake planktonic communities due to the decrease of lake water transparency induced by input of inorganic material from the catchment area to the lake. The paleolimnological investigation, through the combined study of biotic and abiotic factor, allowed clarifying the synergic effects of the most important drivers of change in lake ecosystems, suggesting that climatic factors should be considered with nutrient availability as determinant element in controlling the temporal development of plankton communities and pelagic food web structure.

2002 ◽  
Vol 59 (8) ◽  
pp. 1361-1373 ◽  
Author(s):  
Asit Mazumder ◽  
Jim A Edmundson

Using 16 years of data on nutrients, plankton, and sockeye fry and smolts from Packers Lake, Alaska, we test the impact of nutrients and fry stocking on the growth and productivity of juvenile sockeye salmon (Oncorhynchus nerka). To enhance sockeye production, this lake was fertilized (1983–1996) and stocked annually (1987–1996) with sockeye fry. Before fertilization, the density of sockeye fry was low (<0.20 fry·m–2), the size and biomass of Daphnia were low, and sockeye smolts were relatively small. Before stocking, all trophic levels responded positively to fertilization. The biomass and mean size of Daphnia increased significantly. The average size of age-1 and age-2 smolts increased three- to four-fold. Fry stocking produced dramatic declines in both biomass and mean length of Daphnia and in size of smolts. When large-sized (>1 mm) Daphnia were significantly reduced in density under heavy predation by sockeye fry, the growth of juvenile sockeye declined, even under continued fertilization. We show that fry density and associated food web structure are major determinants of juvenile sockeye responses to fertilization and stocking. This study probably provides the first long-term experimental results linking limnological and nutrient – food web concepts to trophodynamics and productivity of juvenile sockeye salmon.


Ecology ◽  
2018 ◽  
Vol 99 (12) ◽  
pp. 2712-2720 ◽  
Author(s):  
Tom Clegg ◽  
Mohammad Ali ◽  
Andrew P. Beckerman

Author(s):  
Peter Kasprzak ◽  
Frank Gervais ◽  
Rita Adrian ◽  
Winfried Weiler ◽  
Robert Radke ◽  
...  

2015 ◽  
Author(s):  
Abigail Z. Jacobs ◽  
Jennifer A. Dunne ◽  
Cristopher Moore ◽  
Aaron Clauset

Food webs represent the set of consumer-resource interactions among a set of species that co-occur in a habitat, but most food web studies have omitted parasites and their interactions. Recent studies have provided conflicting evidence on whether including parasites changes food web structure, with some suggesting that parasitic interactions are structurally distinct from those among free-living species while others claim the opposite. Here, we describe a principled method for understanding food web structure that combines an efficient optimization algorithm from statistical physics called parallel tempering with a probabilistic generalization of the empirically well-supported food web niche model. This generative model approach allows us to rigorously estimate the degree to which interactions that involve parasites are statistically distinguishable from interactions among free-living species, whether parasite niches behave similarly to free-living niches, and the degree to which existing hypotheses about food web structure are naturally recovered. We apply this method to the well-studied Flensburg Fjord food web and show that while predation on parasites, concomitant predation of parasites, and parasitic intraguild trophic interactions are largely indistinguishable from free-living predation interactions, parasite-host interactions are different. These results provide a powerful new tool for evaluating the impact of classes of species and interactions on food web structure to shed new light on the roles of parasites in food webs.


2018 ◽  
Vol 161 ◽  
pp. 87-101 ◽  
Author(s):  
Mladen Šolić ◽  
Branka Grbec ◽  
Frano Matić ◽  
Danijela Šantić ◽  
Stefanija Šestanović ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document