scholarly journals Land‐use influences on New Zealand stream communities: Effects on species composition, functional organisation, and food‐web structure

2004 ◽  
Vol 38 (4) ◽  
pp. 595-608 ◽  
Author(s):  
R. M. Thompson ◽  
C. R. Townsend
2021 ◽  
Author(s):  
Barbara Leoni ◽  
Martina Patelli ◽  
Veronica Nava ◽  
Monica Tolotti

AbstractIn big lakes with strong anthropogenic pressure, it is usually difficult to disentangle the impacts of climate variability from those driven by eutrophication. The present work aimed at the reconstruction of change in the species distribution and density of subfossil Cladocera in Lake Iseo (Italy) in relation to climate and anthropogenic pressure. We related subfossil Cladocera species composition and density in an 80-cm sediment core collected in the pelagic zone of Lake Iseo to long-term temperature trends and phosphorus concentration inferred by diatoms frustules. The Cladocera remains detected in Lake Iseo sediment reflected the species composition and density of modern pelagic Cladocera assemblages. Cladocera rapidly respond to environmental change, and that climate change combined with eutrophication can induce changes in community composition and species density. At the beginning of twentieth century, when global warming was not yet so accentuated, the nutrient increase in water resulted as the principal driver in determining the long-term development of plankton communities and pelagic food web structure. Moreover, catchment-related processes may decisively affect both species composition and density of the lake planktonic communities due to the decrease of lake water transparency induced by input of inorganic material from the catchment area to the lake. The paleolimnological investigation, through the combined study of biotic and abiotic factor, allowed clarifying the synergic effects of the most important drivers of change in lake ecosystems, suggesting that climatic factors should be considered with nutrient availability as determinant element in controlling the temporal development of plankton communities and pelagic food web structure.


2017 ◽  
Vol 27 (4) ◽  
pp. 1190-1198 ◽  
Author(s):  
Joshua J. Thoresen ◽  
David Towns ◽  
Sebastian Leuzinger ◽  
Mel Durrett ◽  
Christa P. H. Mulder ◽  
...  

2020 ◽  
Vol 106 (2) ◽  
pp. 69-85
Author(s):  
Matthew J. Young ◽  
Frederick Feyrer ◽  
Paul R. Stumpner ◽  
Veronica Larwood ◽  
Oliver Patton ◽  
...  

2009 ◽  
Vol 364 (1524) ◽  
pp. 1789-1801 ◽  
Author(s):  
Kevin Shear McCann ◽  
Neil Rooney

Here, we synthesize a number of recent empirical and theoretical papers to argue that food-web dynamics are characterized by high amounts of spatial and temporal variability and that organisms respond predictably, via behaviour, to these changing conditions. Such behavioural responses on the landscape drive a highly adaptive food-web structure in space and time. Empirical evidence suggests that underlying attributes of food webs are potentially scale-invariant such that food webs are characterized by hump-shaped trophic structures with fast and slow pathways that repeat at different resolutions within the food web. We place these empirical patterns within the context of recent food-web theory to show that adaptable food-web structure confers stability to an assemblage of interacting organisms in a variable world. Finally, we show that recent food-web analyses agree with two of the major predictions of this theory. We argue that the next major frontier in food-web theory and applied food-web ecology must consider the influence of variability on food-web structure.


Sign in / Sign up

Export Citation Format

Share Document