MINIMALITY, HARMONICITY AND CR GEOMETRY FOR REEB VECTOR FIELDS

2010 ◽  
Vol 21 (09) ◽  
pp. 1189-1218 ◽  
Author(s):  
DOMENICO PERRONE

Let (M, g) be a Riemannian manifold and T1 M its unit tangent sphere bundle. Minimality and harmonicity of unit vector fields have been extensively studied by considering on T1M the Sasaki metric [Formula: see text]. This metric, and other well-known Riemannian metrics on T1 M, are particular examples of Riemannian natural metrics. In this paper we equip T1 M with a Riemannian natural metric [Formula: see text] and in particular with a natural contact metric structure. Then, we study the minimality for Reeb vector fields of contact metric manifolds and of quasi-umbilical hypersurfaces of a Kähler manifold. Several explicit examples are given. In particular, the Reeb vector field ξ of a K-contact manifold is minimal for any [Formula: see text] that belongs to a family depending on two parameters of metrics of the Kaluza–Klein type. Next, we show that the Reeb vector field ξ of a K-contact manifold defines a harmonic map [Formula: see text] for any Riemannian natural metric [Formula: see text]. Besides this, if the Reeb vector ξ of an almost contact metric manifold is a CR map then the induced almost CR structure on M is strictly pseudoconvex and ξ is a pseudo-Hermitian map; if in addition ξ is geodesic then [Formula: see text] is a harmonic map. Moreover, the Reeb vector field ξ of a contact metric manifold is a CR map iff ξ is Killing and [Formula: see text] is a special metric of the Kaluza–Klein type. Finally, in the final section, we obtain that there is a family of strictly pseudoconvex CR structures on T1S2n+1 depending on one parameter, for which a Hopf vector field ξ determines a pseudo-harmonic map (in the sense of Barletta–Dragomir–Urakawa [8]) from S2n+1 to T1S2n+1.

Mathematics ◽  
2019 ◽  
Vol 7 (10) ◽  
pp. 892
Author(s):  
David E. Blair

In this expository article, we discuss the author’s conjecture that an associated metric for a given contact form on a contact manifold of dimension ≥5 must have some positive curvature. In dimension 3, the standard contact structure on the 3-torus admits a flat associated metric; we also discuss a local example, due to Krouglov, where there exists a neighborhood of negative curvature on a particular 3-dimensional contact metric manifold. In the last section, we review some results on contact metric manifolds with negative sectional curvature for sections containing the Reeb vector field.


2007 ◽  
Vol 76 (2) ◽  
pp. 269-283 ◽  
Author(s):  
D. Perrone ◽  
L. Vergori

In this paper we obtain criteria of stability for ηEinstein k-contact manifolds, for Sasakian manifolds of constant ϕ-sectional curvature and for 3-dimensional Sasakian manifolds. Moreover, we show that a stable compact Einstein contact metric manifold M is Sasakian if and only if the Reeb vector field ξ minimises the energy functional. In particular, the Reeb vector field of a Sasakian manifold M of constant ϕ-holomorphic sectional curvature +1 minimises the energy functional if and only if M is not simply connected.


2019 ◽  
Vol 16 (03) ◽  
pp. 1950039 ◽  
Author(s):  
V. Venkatesha ◽  
Devaraja Mallesha Naik

If [Formula: see text] is a 3-dimensional contact metric manifold such that [Formula: see text] which admits a Yamabe soliton [Formula: see text] with the flow vector field [Formula: see text] pointwise collinear with the Reeb vector field [Formula: see text], then we show that the scalar curvature is constant and the manifold is Sasakian. Moreover, we prove that if [Formula: see text] is endowed with a Yamabe soliton [Formula: see text], then either [Formula: see text] is flat or it has constant scalar curvature and the flow vector field [Formula: see text] is Killing. Furthermore, we show that if [Formula: see text] is non-flat, then either [Formula: see text] is a Sasakian manifold of constant curvature [Formula: see text] or [Formula: see text] is an infinitesimal automorphism of the contact metric structure on [Formula: see text].


2019 ◽  
Vol 0 (0) ◽  
Author(s):  
Amalendu Ghosh

Abstract We prove that on a K-contact manifold, a Ricci almost soliton is a Ricci soliton if and only if the potential vector field V is a Jacobi field along the Reeb vector field ξ. Then we study contact metric as a Ricci almost soliton with parallel Ricci tensor. To this end, we consider Ricci almost solitons whose potential vector field is a contact vector field and prove some rigidity results.


2010 ◽  
Vol 07 (06) ◽  
pp. 951-960 ◽  
Author(s):  
JONG TAEK CHO ◽  
RAMESH SHARMA

We show that a compact contact Ricci soliton with a potential vector field V collinear with the Reeb vector field, is Einstein. We also show that a homogeneous H-contact gradient Ricci soliton is locally isometric to En+1 × Sn(4). Finally we obtain conditions so that the horizontal and tangential lifts of a vector field on the base manifold may be potential vector fields of a Ricci soliton on the unit tangent bundle.


2008 ◽  
Vol 77 (3) ◽  
pp. 373-386 ◽  
Author(s):  
BENIAMINO CAPPELLETTI MONTANO ◽  
LUIGIA DI TERLIZZI

AbstractWe describe a contact metric manifold whose Reeb vector field belongs to the (κ,μ)-nullity distribution as a bi-Legendrian manifold and we study its canonical bi-Legendrian structure. Then we characterize contact metric (κ,μ)-spaces in terms of a canonical connection which can be naturally defined on them.


2017 ◽  
Vol 4 (1) ◽  
pp. 43-72 ◽  
Author(s):  
Martin de Borbon

Abstract The goal of this article is to provide a construction and classification, in the case of two complex dimensions, of the possible tangent cones at points of limit spaces of non-collapsed sequences of Kähler-Einstein metrics with cone singularities. The proofs and constructions are completely elementary, nevertheless they have an intrinsic beauty. In a few words; tangent cones correspond to spherical metrics with cone singularities in the projective line by means of the Kähler quotient construction with respect to the S1-action generated by the Reeb vector field, except in the irregular case ℂβ₁×ℂβ₂ with β₂/ β₁ ∉ Q.


2018 ◽  
Vol 61 (3) ◽  
pp. 543-552
Author(s):  
Imsoon Jeong ◽  
Juan de Dios Pérez ◽  
Young Jin Suh ◽  
Changhwa Woo

AbstractOn a real hypersurface M in a complex two-plane Grassmannian G2() we have the Lie derivation and a differential operator of order one associated with the generalized Tanaka–Webster connection . We give a classification of real hypersurfaces M on G2() satisfying , where ξ is the Reeb vector field on M and S the Ricci tensor of M.


Sign in / Sign up

Export Citation Format

Share Document