scholarly journals Additions to the genus Gimesia: description of Gimesia alba sp. nov., Gimesia algae sp. nov., Gimesia aquarii sp. nov., Gimesia aquatilis sp. nov., Gimesia fumaroli sp. nov. and Gimesia panareensis sp. nov., isolated from aquatic habitats of the Northern Hemisphere

2020 ◽  
Vol 113 (12) ◽  
pp. 1999-2018
Author(s):  
Sandra Wiegand ◽  
Mareike Jogler ◽  
Christian Boedeker ◽  
Anja Heuer ◽  
Patrick Rast ◽  
...  

AbstractThirteen novel planctomycetal strains were isolated from five different aquatic sampling locations. These comprise the hydrothermal vent system close to Panarea Island (Italy), a biofilm on the surface of kelp at Monterey Bay (CA, USA), sediment and algae on Mallorca Island (Spain) and Helgoland Island (Germany), as well as a seawater aquarium in Braunschweig, Germany. All strains were shown to belong to the genus Gimesia. Their genomes cover a size range from 7.22 to 8.29 Mb and have a G+C content between 45.1 and 53.7%. All strains are mesophilic (Topt 26–33 °C) with generation times between 12 and 32 h. Analysis of fatty acids yielded palmitic acid (16:0) and a fatty acid with the equivalent chain length of 15.817 as major compounds. While five of the novel strains belong to the already described species Gimesia maris and Gimesia chilikensis, the other strains belong to novel species, for which we propose the names Gimesia alba (type strain Pan241wT = DSM 100744T = LMG 31345T = CECT 9841T = VKM B-3430T), Gimesia algae (type strain Pan161T = CECT 30192T = STH00943T = LMG 29130T), Gimesia aquarii (type strain V144T = DSM 101710T = VKM B-3433T), Gimesia fumaroli (type strain Enr17T = DSM 100710T = VKM B-3429T) and Gimesia panareensis (type strain Enr10T = DSM 100416T = LMG 29082T). STH numbers refer to the Jena Microbial Resource Collection (JMRC).

2020 ◽  
Vol 113 (12) ◽  
pp. 1979-1997
Author(s):  
Sandra Wiegand ◽  
Mareike Jogler ◽  
Christian Boedeker ◽  
Anja Heuer ◽  
Stijn H. Peeters ◽  
...  

AbstractEight novel strains of the phylum Planctomycetes were isolated from different aquatic habitats. Among these habitats were the hydrothermal vent system close to Panarea Island, a public beach at Mallorca Island, the shore of Costa Brava (Spain), and three sites with brackish water in the Baltic Sea. The genome sizes of the novel strains range from 4.33 to 6.29 Mb with DNA G+C contents between 52.8 and 66.7%. All strains are mesophilic (Topt 24–30 °C) and display generation times between 17 and 94 h. All eight isolates constitute novel species of either already described or novel genera within the family Lacipirellulaceae. Two of the novel species, Posidoniimonas polymericola (type strain Pla123aT = DSM 103020T = LMG 29466T) and Bythopirellula polymerisocia (type strain Pla144T = DSM 104841T = VKM B-3442T), belong to established genera, while the other strains represent the novel genera Aeoliella gen. nov., Botrimarina gen. nov., Pirellulimonas gen. nov. and Pseudobythopirellula gen. nov. Based on our polyphasic analysis, we propose the species Aeoliella mucimassa sp. nov. (type strain Pan181T = DSM 29370T = LMG 31346T = CECT 9840T = VKM B-3426T), Botrimarina colliarenosi sp. nov. (type strain Pla108T = DSM 103355T = LMG 29803T), Botrimarina hoheduenensis sp. nov. (type strain Pla111T = DSM 103485T = STH00945T, Jena Microbial Resource Collection JMRC), Botrimarina mediterranea sp. nov. (type strain Spa11T = DSM 100745T = LMG 31350T = CECT 9852T = VKM B-3431T), Pirellulimonas nuda sp. nov. (type strain Pla175T = DSM 109594T = CECT 9871T = VKM B-3448T) and Pseudobythopirellula maris sp. nov. (type strain Mal64T = DSM 100832T = LMG 29020T).


2011 ◽  
Vol 61 (7) ◽  
pp. 1606-1611 ◽  
Author(s):  
Enrico Tortoli ◽  
Erik C. Böttger ◽  
Anna Fabio ◽  
Enevold Falsen ◽  
Zoe Gitti ◽  
...  

Four strains isolated in the last 15 years were revealed to be identical in their 16S rRNA gene sequences to MCRO19, the sequence of which was deposited in GenBank in 1995. In a polyphasic analysis including phenotypic and genotypic features, the five strains (including MCRO19), which had been isolated in four European countries, turned out to represent a unique taxonomic entity. They are scotochromogenic slow growers and are genetically related to the group that included Mycobacterium simiae and 15 other species. The novel species Mycobacterium europaeum sp. nov. is proposed to accommodate these five strains. Strain FI-95228T ( = DSM 45397T  = CCUG 58464T) was chosen as the type strain. In addition, a thorough revision of the phenotypic and genotypic characters of the species related to M. simiae was conducted which leads us to suggest the denomination of the ‘Mycobacterium simiae complex’ for this group.


2004 ◽  
Vol 54 (6) ◽  
pp. 2343-2346 ◽  
Author(s):  
David P. Labeda ◽  
Reiner M. Kroppenstedt

A polyphasic taxonomic evaluation of presumptive strains representative of the genus Glycomyces held within the Agricultural Research Service Culture Collection resulted in the discovery of three novel species. Analysis of the whole cell sugar content of these novel species, as well as of two species presently assigned to the genus, revealed that the whole cell sugar pattern was different from that reported in the formal description of the genus Glycomyces. The sugars present in all strains studied included ribose, xylose, mannose and galactose rather than xylose and arabinose as reported in the original description of the genus. Moreover, the menaquinone patterns observed for the novel species also deviated from the original genus description. The formal description of the genus Glycomyces is emended to reflect these new data. The novel species proposed and described are Glycomyces algeriensis sp. nov. (type strain NRRL B-16327T=DSM 44727T), Glycomyces arizonensis sp. nov. (type strain NRRL B-16153T=DSM 44726T) and Glycomyces lechevalierae sp. nov. (type strain NRRL B-16149T=DSM 44724T).


2015 ◽  
Vol 65 (Pt_1) ◽  
pp. 23-29 ◽  
Author(s):  
Dominique Gueule ◽  
Gérard Fourny ◽  
Elisabeth Ageron ◽  
Anne Le Flèche-Matéos ◽  
Mathias Vandenbogaert ◽  
...  

Six isolates recovered from coffee seeds giving off a potato-like flavour were studied. Gene sequencing (rrs and rpoB) showed they belong to the genus Pantoea . By DNA–DNA hybridization, the isolates constituted a genomic species with less than 17 % relatedness to 96 strains representing enterobacterial species. Multilocus sequence analysis (gyrB, rpoB, atpD and infB genes) showed the isolates to represent a discrete species of the genus Pantoea . Nutritional versatility of the novel species was poor. The novel species is proposed as Pantoea coffeiphila sp.nov. and its type strain is Ca04T ( = CIP 110718T = DSM 28482T).


2010 ◽  
Vol 60 (1) ◽  
pp. 244-248 ◽  
Author(s):  
Melissa Fontes Landell ◽  
Raisa Billodre ◽  
Jesus P. Ramos ◽  
Orílio Leoncini ◽  
Marilene H. Vainstein ◽  
...  

Two novel yeast species, Candida aechmeae sp. nov. and Candida vrieseae sp. nov., were isolated from bromeliads in Itapuã Park, Rio Grande do Sul, Brazil. These species are genetically isolated from all other currently recognized ascomycetous yeasts based on their sequence divergence in the D1/D2 domain of the LSU rRNA gene. C. aechmeae sp. nov. is phylogenetically close to Candida ubatubensis, a species also isolated from bromeliads in Brazil, but the novel species can be differentiated on the basis of differences in the D1/D2 domain and positive results for the assimilation of l-arabinose, raffinose, inulin and citrate. Candida vrieseae sp. nov. is phylogenetically placed in a clade near Candida membranifaciens that is composed of several species associated with insects, but the novel species can be differentiated from them by the D1/D2 and ITS gene sequences, positive results for the assimilation of nitrite and a negative result for the assimilation of ethylamine. The type strain for Candida aechmeae sp. nov. is BI153T (=CBS 10831T=NRRL Y-48456T) and the type strain for C. vrieseae sp. nov. is BI146T (=CBS 10829T=NRRL Y-48461T).


2015 ◽  
Vol 65 (Pt_6) ◽  
pp. 1855-1859 ◽  
Author(s):  
Ana Raquel O. Santos ◽  
Elisa S. Faria ◽  
Marc-André Lachance ◽  
Carlos A. Rosa

Five strains of a novel methanol-assimilating yeast species were isolated from mango (Mangifera indica) leaves collected at the campus of the Federal University of Minas Gerais in Brazil. The sequences of the internal transcribed spacer (ITS) region and the D1/D2 domains of the large subunit of the rRNA gene showed that this species belongs to the Ogataea clade and is related to O. allantospora, O. chonburiensis, O. dorogensis, O. kodamae, O. paradorogensis and Candida xyloterini (Ogataea clade). The novel species differs in the D1/D2 domains of the large subunit of the rRNA gene by 12 to 40 substitutions from these Ogataea species. The name Ogataea mangiferae sp. nov. is proposed for this novel species. The type strain of Ogataea mangiferae sp. nov. is UFMG-CM-Y253T ( = CBS 13492T). The Mycobank number is MB 811646.


2019 ◽  
Vol 8 (2) ◽  
Author(s):  
Yan-Qiong Li ◽  
Hui Zhang ◽  
Manik Prabhu Narsing Rao ◽  
Zhou-Yan Dong ◽  
Dalal Hussien M. Alkhalifah ◽  
...  

We report here the draft genome sequence of Sphingomonas ginsengisoli KCTC 12630T. The draft genome has a size of 3,045,889 bp and a G+C content of 67.1%.


2011 ◽  
Vol 61 (4) ◽  
pp. 709-715 ◽  
Author(s):  
Seong Chan Park ◽  
Keun Sik Baik ◽  
Han Na Choe ◽  
Chae Hong Lim ◽  
Ho Jun Kim ◽  
...  

Two non-motile, orange- or yellow-pigmented bacteria, designated strains KYW48T and KYW147T, were isolated from seawater collected from the South Sea, Republic of Korea. Cells of both strains were Gram-reaction-negative, aerobic and catalase- and oxidase-positive. The major fatty acids of strain KYW48T were C18 : 1ω7c (35.3 %), summed feature 3 (iso-C15 : 0 2-OH and/or C16 : 1ω7c) (22.7 %), C17 : 1ω6c (19.8 %), C14 : 0 2-OH (7.4 %) and C16 : 0 (5.9 %), and those of strain KYW147T were C18 : 1ω7c (36.0 %), summed feature 3 (18.3 %), C16 : 0 (14.7 %), 11-methyl C18 : 1ω7c (10.7 %), C16 : 0 2-OH (9.1 %) and C18 : 1ω9c (8.0 %). The predominant isoprenoid quinone of both strains was ubiquinone 10 (Q-10). The DNA G+C contents of strains KYW48T and KYW147T were 63.8 and 67.2 mol%, respectively. A phylogenetic tree based on 16S rRNA gene sequences showed that strains KYW48T and KYW147T were grouped with the members of the family Erythrobacteraceae and formed a distinct clade with the members of the genus Altererythrobacter (<95.7 % sequence similarity). On the basis of the evidence presented in this study, the novel species Altererythrobacter namhicola sp. nov. (type strain KYW48T  = KCTC 22736T  = JCM 16345T) and Altererythrobacter aestuarii sp. nov. (type strain KYW147T  = KCTC 22735T  = JCM 16339T) are proposed.


2011 ◽  
Vol 61 (9) ◽  
pp. 2215-2220 ◽  
Author(s):  
Atsushi Baba ◽  
Masayuki Miyazaki ◽  
Takahiko Nagahama ◽  
Yuichi Nogi

Three chitin-degrading strains representing two novel species were isolated from mangrove forests in Okinawa, Japan. The isolates, ABABA23T, ABABA211 and ABABA212T, were Gram-negative, non-spore-forming, strictly aerobic chemo-organotrophs. The novel strains produced Q-8 as the major isoprenoid quinone component. The predominant fatty acids were iso-C15 : 0 and C16 : 0. On the basis of 16S rRNA gene sequence analysis, the isolates were closely affiliated with members of the genus Microbulbifer. The DNA G+C contents of strains ABABA23T and ABABA212T were 57.8 and 60.2 mol%, respectively. DNA–DNA relatedness values between these two strains and Microbulbifer reference strains were significantly lower than 70 %, the generally accepted threshold level below which strains are considered to belong to separate species. Based on differences in taxonomic characteristics, the three isolates represent two novel species of the genus Microbulbifer, for which the names Microbulbifer chitinilyticus sp. nov. (type strain, ABABA212T = JCM 16148T = NCIMB 14577T) and Microbulbifer okinawensis sp. nov. (type strain, ABABA23T = JCM 16147T = NCIMB 14576T; reference strain, ABABA211) are proposed.


2013 ◽  
Vol 63 (Pt_4) ◽  
pp. 1323-1328 ◽  
Author(s):  
William J. Wolfgang ◽  
Teresa V. Passaretti ◽  
Reashma Jose ◽  
Jocelyn Cole ◽  
An Coorevits ◽  
...  

A polyphasic analysis was undertaken of seven independent isolates of Gram-negative cocci collected from pathological clinical samples from New York, Louisiana, Florida and Illinois and healthy subgingival plaque from a patient in Virginia, USA. The 16S rRNA gene sequence similarity among these isolates was 99.7–100 %, and the closest species with a validly published name was Neisseria lactamica (96.9 % similarity to the type strain). DNA–DNA hybridization confirmed that these isolates are of the same species and are distinct from their nearest phylogenetic neighbour, N. lactamica . Phylogenetic analysis of 16S and 23S rRNA gene sequences indicated that the novel species belongs in the genus Neisseria . The predominant cellular fatty acids were C16 : 0, summed feature 3 (C16 : 1ω7c and/or iso-C15 : 0 2-OH) and C18 : 1ω7c. The cellular fatty acid profile, together with other phenotypic characters, further supports the inclusion of the novel species in the genus Neisseria . The name Neisseria oralis sp. nov. (type strain 6332T  = DSM 25276T  = LMG 26725T) is proposed.


Sign in / Sign up

Export Citation Format

Share Document