Effects of induced magnetic field on peristaltic flow of Johnson-Segalman fluid in a vertical symmetric channel

2010 ◽  
Vol 31 (8) ◽  
pp. 969-978 ◽  
Author(s):  
S. Nadeem ◽  
N. S. Akbar
2008 ◽  
Vol 2008 ◽  
pp. 1-23 ◽  
Author(s):  
Kh. S. Mekheimer

We carry out the effect of the induced magnetic field on peristaltic transport of an incompressible conducting micropolar fluid in a symmetric channel. The flow analysis has been developed for low Reynolds number and long wavelength approximation. Exact solutions have been established for the axial velocity, microrotation component, stream function, magnetic-force function, axial-induced magnetic field, and current distribution across the channel. Expressions for the shear stresses are also obtained. The effects of pertinent parameters on the pressure rise per wavelength are investigated by means of numerical integrations, also we study the effect of these parameters on the axial pressure gradient, axial-induced magnetic field, as well as current distribution across the channel and the nonsymmetric shear stresses. The phenomena of trapping and magnetic-force lines are further discussed.


2009 ◽  
Vol 26 (2) ◽  
pp. 345-366 ◽  
Author(s):  
T. Hayat ◽  
Yasir Khan ◽  
Kh. S. Mekheimer ◽  
Nasir Ali

2013 ◽  
Vol 68 (12) ◽  
pp. 751-758 ◽  
Author(s):  
Tasawar Hayat ◽  
Saima Noreen ◽  
Muhammad Qasim

In this paper, we discuss the effects of heat and mass transfer on the peristaltic flow in the presence of an induced magnetic field. Constitutive equations of a Phan-Thien-Tanner fluid are utilized in the mathematical description. Mathematical modelling is based upon the laws of mass, linear momentum, energy, and concentration. Relevant equations are simplified using long wavelength and low Reynolds number assumptions. A series solution is presented for small Weissenberg number. Variations of emerging parameters embedded in the flow system are discussed.


2010 ◽  
Vol 65 (8-9) ◽  
pp. 665-676 ◽  
Author(s):  
Tasawar Hayat ◽  
Saima Noreen ◽  
Nasir Ali

This article looks at the influence of an induced magnetic field on peristaltic motion of an incompressible fluid in a planar channel with non-conductive walls. Peristaltic flow is generated by a sinusoidal wave travelling down its walls. The problem formulation in a wave frame of reference moving with velocity of wave is established. Mathematical relations for the stream function, pressure gradient, magnetic force function, and axial induced magnetic field are constructed. The pressure rise and frictional force are discussed by performing numerical integration. Effects of many sundry parameters entering into the governing problem are examined by plotting graphs


Sign in / Sign up

Export Citation Format

Share Document