scholarly journals Exponential Functions in Cartesian Differential Categories

Author(s):  
Jean-Simon Pacaud Lemay

Abstract In this paper, we introduce differential exponential maps in Cartesian differential categories, which generalizes the exponential function $$e^x$$ e x from classical differential calculus. A differential exponential map is an endomorphism which is compatible with the differential combinator in such a way that generalizations of $$e^0 = 1$$ e 0 = 1 , $$e^{x+y} = e^x e^y$$ e x + y = e x e y , and $$\frac{\partial e^x}{\partial x} = e^x$$ ∂ e x ∂ x = e x all hold. Every differential exponential map induces a commutative rig, which we call a differential exponential rig, and conversely, every differential exponential rig induces a differential exponential map. In particular, differential exponential maps can be defined without the need of limits, converging power series, or unique solutions of certain differential equations—which most Cartesian differential categories do not necessarily have. That said, we do explain how every differential exponential map does provide solutions to certain differential equations, and conversely how in the presence of unique solutions, one can derivative a differential exponential map. Examples of differential exponential maps in the Cartesian differential category of real smooth functions include the exponential function, the complex exponential function, the split complex exponential function, and the dual numbers exponential function. As another source of interesting examples, we also study differential exponential maps in the coKleisli category of a differential category.

Author(s):  
Mario Alvarez-Picallo ◽  
Jean-Simon Pacaud Lemay

AbstractCartesian differential categories are categories equipped with a differential combinator which axiomatizes the directional derivative. Important models of Cartesian differential categories include classical differential calculus of smooth functions and categorical models of the differential $$\lambda $$ λ -calculus. However, Cartesian differential categories cannot account for other interesting notions of differentiation such as the calculus of finite differences or the Boolean differential calculus. On the other hand, change action models have been shown to capture these examples as well as more “exotic” examples of differentiation. However, change action models are very general and do not share the nice properties of a Cartesian differential category. In this paper, we introduce Cartesian difference categories as a bridge between Cartesian differential categories and change action models. We show that every Cartesian differential category is a Cartesian difference category, and how certain well-behaved change action models are Cartesian difference categories. In particular, Cartesian difference categories model both the differential calculus of smooth functions and the calculus of finite differences. Furthermore, every Cartesian difference category comes equipped with a tangent bundle monad whose Kleisli category is again a Cartesian difference category.


2018 ◽  
Vol 39 (10) ◽  
pp. 2855-2880
Author(s):  
KHUDOYOR MAMAYUSUPOV

We obtain a unique, canonical one-to-one correspondence between the space of marked postcritically finite Newton maps of polynomials and the space of postcritically minimal Newton maps of entire maps that take the form $p(z)\exp (q(z))$ for $p(z)$, $q(z)$ polynomials and $\exp (z)$, the complex exponential function. This bijection preserves the dynamics and embedding of Julia sets and is induced by a surgery tool developed by Haïssinsky.


2021 ◽  
Vol Volume 17, Issue 3 ◽  
Author(s):  
Mario Alvarez-Picallo ◽  
Jean-Simon Pacaud Lemay

Cartesian differential categories are categories equipped with a differential combinator which axiomatizes the directional derivative. Important models of Cartesian differential categories include classical differential calculus of smooth functions and categorical models of the differential $\lambda$-calculus. However, Cartesian differential categories cannot account for other interesting notions of differentiation of a more discrete nature such as the calculus of finite differences. On the other hand, change action models have been shown to capture these examples as well as more "exotic" examples of differentiation. But change action models are very general and do not share the nice properties of Cartesian differential categories. In this paper, we introduce Cartesian difference categories as a bridge between Cartesian differential categories and change action models. We show that every Cartesian differential category is a Cartesian difference category, and how certain well-behaved change action models are Cartesian difference categories. In particular, Cartesian difference categories model both the differential calculus of smooth functions and the calculus of finite differences. Furthermore, every Cartesian difference category comes equipped with a tangent bundle monad whose Kleisli category is again a Cartesian difference category.


Author(s):  
Odirley Willians Miranda Saraiva ◽  
Gustavo Nogueira Dias ◽  
Fabricio da Silva Lobato ◽  
José Carlos Barros de Souza Júnior ◽  
Washington Luiz Pedrosa da Silva Junior ◽  
...  

The present work presents a new method of integration of non-elementary exponential functions where Fubinni's iterated integrals were used. In this research, some approximations were used in order to generalize the results obtained through mathematical series, in addition to integration methods and double integrals. In addition to the integration methods, the Taylor series was used, where the value found and compatible with the values ​​of the power series that are used to calculate the value of the exponential function demonstrated in the work was verified. In addition to the methods described, a comparison of the values ​​obtained by the series and the values ​​described in the method was improvised, where it was noticed that the higher the value of the variable, the closer the results show a stability for the variable greater than the value 4, described in table 01. The conclusions point to a great improvement, mainly for solving elliptic differential equations and statistical functions.


Author(s):  
C. F. Lorenzo ◽  
T. T. Hartley ◽  
R. Malti

A new and simplified method for the solution of linear constant coefficient fractional differential equations of any commensurate order is presented. The solutions are based on the R -function and on specialized Laplace transform pairs derived from the principal fractional meta-trigonometric functions. The new method simplifies the solution of such fractional differential equations and presents the solutions in the form of real functions as opposed to fractional complex exponential functions, and thus is directly applicable to real-world physics.


Filomat ◽  
2018 ◽  
Vol 32 (9) ◽  
pp. 3347-3354 ◽  
Author(s):  
Nematollah Kadkhoda ◽  
Michal Feckan ◽  
Yasser Khalili

In the present article, a direct approach, namely exp(-?)-expansion method, is used for obtaining analytical solutions of the Pochhammer-Chree equations which have a many of models. These solutions are expressed in exponential functions expressed by hyperbolic, trigonometric and rational functions with some parameters. Recently, many methods were attempted to find exact solutions of nonlinear partial differential equations, but it seems that the exp(-?)-expansion method appears to be efficient for finding exact solutions of many nonlinear differential equations.


2009 ◽  
Vol 3 (1) ◽  
pp. 14-26
Author(s):  
Jae-Young Chung

Employing two methods we consider a class of n-dimensional functional equations in the space of Schwartz distributions. As the first approach, employing regularizing functions we reduce the equations in distributions to classical ones of smooth functions and find the solutions. Secondly, using differentiation in distributions, converting the functional equations to differential equations and find the solutions. Also we consider the Hyers-Ulam stability of the equations.


1980 ◽  
Vol 47 (4) ◽  
pp. 861-865 ◽  
Author(s):  
G. V. Ranjan ◽  
C. R. Steele

Asymptotic expansions for self-equilibrating edge loading are derived in terms of exponential functions, from which formulas for the stiffness and flexibility edge influence coefficients are obtained, which include the quadratic nonlinear terms. The flexibility coefficients agree with those previously obtained by Van Dyke for the pressurized spherical shell and provide the generalization to general geometry and loading. In addition, the axial displacement is obtained. The nonlinear terms in the differential equations can be identified as “prestress” and “quadratic rotation.” To assess the importance of the latter, the problem of a pressurized spherical cap with roller supported edges is considered. Results show that whether the rotation at the edge is constrained or not, the quadratic rotation terms do not have a large effect on the axial displacement. The effect will be large for problems with small membrane stresses.


Sign in / Sign up

Export Citation Format

Share Document