Genetic analysis and screening of pyrethroid resistance mutations in Varroa destructor populations from Turkey

Author(s):  
Nafiye Koç ◽  
Emre İnak ◽  
Wim Jonckheere ◽  
Thomas Van Leeuwen
Author(s):  
Anabel Millán-Leiva ◽  
Óscar Marín ◽  
Pilar De la Rúa ◽  
Irene Muñoz ◽  
Anastasia Tsagkarakou ◽  
...  

Acta Tropica ◽  
2020 ◽  
Vol 203 ◽  
pp. 105294 ◽  
Author(s):  
Nurper Guz ◽  
Naciye Sena Cagatay ◽  
Emmanouil A Fotakis ◽  
Enver Durmusoglu ◽  
John Vontas

2020 ◽  
Vol 20 (4) ◽  
Author(s):  
Matthew Pinch ◽  
Stacy D Rodriguez ◽  
Soumi Mitra ◽  
Yashoda Kandel ◽  
Emily Moore ◽  
...  

Abstract The use of insecticides has been a central approach to control disease-transmitting mosquitoes for the last century. The high prevalence of pyrethroid use as public health insecticides has resulted in the evolution of pyrethroid resistance in many populations of Aedes aegypti (Linnaeus) (Diptera: Culicidae), throughout its global distribution range. Insecticide resistance is often correlated with an associated fitness cost. In this project, we studied the phenotypes of hybrid mosquitoes derived from crossing a pyrethroid-resistant strain of Ae. aegypti (Puerto Rico [PR]) with a more susceptible one (Rockefeller [ROCK]). We first sequenced and compared the para gene of both original strains. We then crossed males from one strain with females of the other, creating two hybrids (Puertofeller, Rockorico). We used a Y-tube choice assay to measure the attraction of these strains towards a human host. We then compared the levels of pyrethroid resistance in the different strains. We found three known resistance mutations in the para gene sequence of the PR strain. In our attraction assays, PR females showed lower attraction to humans, than the ROCK females. Both hybrid strains showed strong attraction to a human host. In the insecticide resistance bottle assays, both hybrid strains showed marginal increases in resistance to permethrin compared to the more susceptible ROCK strain. These results suggest that hybrids of sensitive and permethrin-resistant mosquitoes have an incremental advantage compared to more susceptible mosquitoes when challenged with permethrin. This explains the rapid spread of permethrin resistance that was observed many times in the field.


2015 ◽  
Vol 114 (11) ◽  
pp. 3999-4004 ◽  
Author(s):  
Aneta Strachecka ◽  
Grzegorz Borsuk ◽  
Krzysztof Olszewski ◽  
Jerzy Paleolog

2020 ◽  
Author(s):  
Tamar E. Carter ◽  
Araya Gebresilassie ◽  
Shantoy Hansel ◽  
Lambodhar Damodaran ◽  
Callum Montgomery ◽  
...  

AbstractThe malaria vector, Anopheles stephensi, which is typically restricted to South Asia and the Middle East, was recently detected in the Horn of Africa. Controlling the spread of this vector could involve integrated vector control that considers the status of insecticide resistance of multiple vector species in the region. Previous reports indicate that the knockdown resistance mutations (kdr) in the voltage-gated sodium channel (vgsc) are absent in both pyrethroid resistant and sensitive variants of An. stephensi in east Ethiopia but similar information on other vector species in the same areas is limited. In this study, kdr and the neighboring intron was analyzed in An. stephensi, An. arabiensis, and Culex pipiens s. l. collected in east Ethiopia between 2016 and 2017. Sequence analysis revealed that all of Cx. pipiens s.l. (n = 42) and 71.6% of the An. arabiensis (n=67) carried kdr L1014F known to confer target-site pyrethroid resistance. Intronic variation was only observed in An. stephensi (segregating sites = 6, haplotypes = 3) previously shown to have no kdr mutations. In addition, no evidence of non-neutral evolutionary processes was detected at the An. stephensi kdr intron which further supports target-site mechanism not being a major resistance mechanism in this An. stephensi population. Overall, these results suggest differences in evolved mechanisms of pyrethroid/DDT resistance in populations of vector species from the same region. Variation in insecticide resistance mechanisms in East Ethiopian mosquito vectors highlight possible species or population specific biological factors and distinct environmental exposures that shape their evolution.


Author(s):  
Tamar E. Carter ◽  
Araya Gebresilassie ◽  
Shantoy Hansel ◽  
Lambodhar Damodaran ◽  
Callum Montgomery ◽  
...  

The malaria vector, Anopheles stephensi, which is typically restricted to South Asia and the Middle East, was recently detected in the Horn of Africa. Addressing the spread of this vector could involve integrated vector control that considers the status of insecticide resistance of multiple vector species in the region. Previous reports indicate that the knockdown resistance mutations (kdr) in the voltage-gated sodium channel (vgsc) are absent in both pyrethroid-resistant and pyrethroid-sensitive An. stephensi in eastern Ethiopia; however, similar information about other vector species in the same areas is limited. In this study, kdr and the neighboring intron were analyzed in An. stephensi, An. arabiensis, and Culex pipiens s.l. collected between 2016 and 2017 to determine the evolutionary history of kdr in eastern Ethiopia. A sequence analysis revealed that all of Cx. pipiens s.l. (N = 42) and 71.6% of the An. arabiensis (N = 67) carried kdr L1014F, which is known to confer target-site pyrethroid resistance. Intronic variation was only observed in An. stephensi (six segregating sites, three haplotypes), which was previously shown to have no kdr mutations. In addition, no evidence of non-neutral evolutionary processes was detected at the An. stephensi kdr intron, thereby further supporting the target-site mechanism not being a major resistance mechanism in this An. stephensi population. Overall, these results show key differences in the evolution of target-site pyrethroid/dichlorodiphenyltrichloroethane resistance mutations in populations of vector species from the same region. Variations in insecticide resistance mechanism profiles between eastern Ethiopian mosquito vectors may lead to different responses to insecticides used in integrated vector control.


2020 ◽  
Author(s):  
Sofia Balaska ◽  
Emmanouil Alexandros Fotakis ◽  
Ilias Kioulos ◽  
Linda Grigoraki ◽  
Spyridoula Mpellou ◽  
...  

Abstract Background: Aedes albopictus has a well-established presence in southern European countries, associated with recent disease outbreaks (e.g. Chikungunya). Development of insecticide resistance in the vector is a major concern as it’s control mainly relies on the use of biocides. Data on the specie’s resistance status is essential for efficient and sustainable control. Methods: We investigated the insecticide resistance status of several Ae. albopictus populations from Greece. Bioassays were performed against diflubenzuron (DFB), B. thuringiensis var. israelensis (Bti), deltamethrin and malathion. Molecular analysis of known insecticide resistance loci was performed, i.e. voltage-gated sodium channel (VGSC) mutations associated with pyrethroid resistance; presence and frequency of carboxylesterases 3 (CCEae3a) and 6 (CCEae6a) gene amplification associated with organophosphate (OP) resistance and; chitin synthase-1 (CHS-1) for the possible presence of DFB resistance mutations. Results: Bioassays showed full susceptibility to DFB, Bti and deltamethrin, but resistance against the OP malathion. VGSC analysis revealed a widespread distribution of mutations F1534C (in all populations, with allelic frequencies between 6.6% - 68.3%), and I1532T (in 6 populations), but absence of V1016G. CCE gene amplifications were recorded in 8 out of 11 populations. Co-presence of mutation F1534C and CCEae3a amplification was reported in a subgroup of samples. No mutations at the CHS locus I1043 were detected. Conclusions: The results indicate: (i) the suitability of larvicides DFB and Bti for Ae. albopictus control in Greece, (ii) a possible incipient pyrethroid resistance due to the presence of kdr mutations and (iii) a possible reduced efficacy of OPs, in a scenario of re-introducing them for vector control. The study highlights the need for systematic resistance monitoring for developing and implementing appropriate evidence-based control programs. Key words: diagnostic, arbovirus, mosquito tiger, insecticide resistance, vector control, Europe


2020 ◽  
Author(s):  
Sofia Balaska ◽  
Emmanouil Alexandros Fotakis ◽  
Ilias Kioulos ◽  
Linda Grigoraki ◽  
Spyridoula Mpellou ◽  
...  

Abstract Background: Aedes albopictus has a well-established presence in southern European countries, associated with recent disease outbreaks (e.g. Chikungunya). Development of insecticide resistance in the vector is a major concern as its control mainly relies on the use of biocides. Data on the species’ resistance status is essential for efficient and sustainable control. To date the insecticide resistance status of Ae. albopictus populations from Greece against major insecticides used in vector control remains largely unknown. Methods: We investigated the insecticide resistance status of nineteen Ae. albopictus populations from 11 regions of Greece. Bioassays were performed against diflubenzuron (DFB), B. thuringiensis var. israelensis (Bti), deltamethrin and malathion. Known insecticide resistance loci were molecularly analysed, i.e. voltage-gated sodium channel (VGSC) mutations associated with pyrethroid resistance; presence and frequency of carboxylesterases 3 (CCEae3a) and 6 (CCEae6a) gene amplification associated with organophosphate (OP) resistance and; chitin synthase-1 (CHS-1) for the possible presence of DFB resistance mutations. Results: Bioassays showed full susceptibility to DFB, Bti and deltamethrin, but resistance against the OP malathion (range of mortality: 55.30-91.40%). VGSC analysis revealed a widespread distribution of mutations F1534C (in all populations, with allelic frequencies between 6.6% - 68.3%), and I1532T (in 6 populations; allelic frequencies below 22.70%), but absence of V1016G. CCE gene amplifications were recorded in 8 out of 11 populations (overall frequency: 33%). Co-presence of mutation F1534C and CCEae3a amplification was reported in 39 of the 156 samples commonly analysed. No mutations at the CHS-1 locus I1043 were detected. Conclusions: The results indicate: (i) the suitability of larvicides DFB and Bti for Ae. albopictus control in Greece, (ii) possible incipient pyrethroid resistance due to the presence of kdr mutations and (iii) possible reduced efficacy of OPs, in a scenario of re-introducing them for vector control. The study highlights the need for systematic resistance monitoring for developing and implementing appropriate evidence-based control programs.


Author(s):  
Emmanouil A Fotakis ◽  
Ioannis A Giantsis ◽  
Samiye Demir ◽  
John G Vontas ◽  
Alexandra Chaskopoulou

Sign in / Sign up

Export Citation Format

Share Document