phlebotomus papatasi
Recently Published Documents


TOTAL DOCUMENTS

294
(FIVE YEARS 55)

H-INDEX

33
(FIVE YEARS 2)

2022 ◽  
Vol 2 ◽  
Author(s):  
Naomi E. Aronson ◽  
Fabiano Oliveira ◽  
Regis Gomes ◽  
William D. Porter ◽  
Robin S. Howard ◽  
...  

Leishmania major, transmitted in Iraq by the bite of a sand fly Phlebotomus papatasi, causes cutaneous leishmaniasis (CL). The sand fly saliva is immunogenic, with both systemic humoral and cellular human immune responses resulting from natural exposure. 248 Americans who developed L. major infection in Iraq were sex, race/ethnicity, year of Iraq deployment-matched to controls without CL. Using a case-control study design, we compared sand fly saliva-specific human IgG levels and recognized antigens between the two groups. Serologic responses to Ph. papatasi salivary gland homogenate were studied with ELISA and Western blot, using serial samples obtained from before travel, during CL treatment (CL) or at time of return to US (controls), as well as (for CL cases) six to 24 months after return to non-endemic US. The mean change in optical density (MCOD), reflecting the change in sand fly saliva-specific IgG before and after exposure in Iraq, was 0.296 (range -0.138 to 2.057) in cases and 0.151 (range -0.454 to1.085) in controls, p<0.001. Low levels of sand fly saliva specific antibody were noted in CL cases by 7-8 months after return to the US. The most frequently recognized Ph. papatasi salivary antigens were MW30 (PpSP32) and MW64, although other salivary proteins recognized were MW12/14, 15, 18, 28, 32, 36, 42, 44, 46, 52. Logistic regression suggested that MW15, 28 and 42 were associated with the largest effect on the MCOD. MW30 was the most frequently recognized antigen suggesting a role as biomarker for sand fly exposure and CL risk. Anti-Ph. papatasi saliva IgG waned within months of return to the US. We also discuss vector antigenic saliva proteins in the context of CL presentation and identify some salivary antigens that may correlate with less lesion area, ulcer versus papule/plaque, race among those with CL.


Acta Tropica ◽  
2022 ◽  
pp. 106303
Author(s):  
Malek Trimèche ◽  
Thouraya Boussoffara ◽  
Ifhem Chelbi ◽  
Saifedine Cherni ◽  
Sami Zhioua ◽  
...  
Keyword(s):  

2021 ◽  
Vol 90 (4 - Ahead of print) ◽  
pp. 175-193
Author(s):  
Maha Moustafa Ahmed ◽  
Heba Yehia Mady ◽  
Amira Hassan El Namaky

The sand fly, Phlebotomus papatasi (Scopoli, 1786) (Diptera: Psychodidae), is the main vector of Leishmania major Yakimoff and Schokhor, 1914, the causative agent of zoonotic cutaneous leishmaniasis North Africa, the Middle East, and North Sinai. The purpose of this study was to determine the effect of fungi on P. papatasi larvae, pupae, and adults using light microscopic analysis, scanning electron microscope (SEM), and histopathological studies. Specifically, larvae, pupae, and adult P. papatasi were infected with the entomopathogenic fungi Beauveria bassiana and Metarhizium anisopliae. Scanning electron microscope and histopathological methods were used to investigate the destructive impact of the fungi on the external and internal structures of P. papatasi. The results revealed propagation of the conidia on the cuticles of all P. papatasi life stages, including on the compound eyes, leg setae, thorax, wings, and abdomen of the adults. Histological sections of the control and treated larvae, pupae, and adults showed many alterations and malformations in the body and tissues of all life stages after 72 h. These results demonstrated that B. bassiana was more effective than M. anisopliae as a biological control of phlebotomine sand flies. Further studies to determine the best methods for delivery and application in the diverse ecological settings of the various leishmaniasis vectors are recommended.


2021 ◽  
Vol 9 (11) ◽  
pp. 2307
Author(s):  
Barbora Kykalová ◽  
Lucie Tichá ◽  
Petr Volf ◽  
Erich Loza Telleria

Phlebotomus papatasi is the vector of Leishmania major, causing cutaneous leishmaniasis in the Old World. We investigated whether P. papatasi immunity genes were expressed toward L. major, commensal gut microbes, or a combination of both. We focused on sand fly transcription factors dorsal and relish and antimicrobial peptides (AMPs) attacin and defensin and assessed their relative gene expression by qPCR. Sand fly larvae were fed food with different bacterial loads. Relish and AMPs gene expressions were higher in L3 and early L4 larval instars, while bacteria 16S rRNA increased in late L4 larval instar, all fed rich-microbe food compared to the control group fed autoclaved food. Sand fly females were treated with an antibiotic cocktail to deplete gut bacteria and were experimentally infected by Leishmania. Compared to non-infected females, dorsal and defensin were upregulated at early and late infection stages, respectively. An earlier increase of defensin was observed in infected females when bacteria recolonized the gut after the removal of antibiotics. Interestingly, this defensin gene expression occurred specifically in midguts but not in other tissues of females and larvae. A gut-specific defensin gene upregulated by L. major infection, in combination with gut-bacteria, is a promising molecular target for parasite control strategies.


Author(s):  
Seyed Hamid Hosseini ◽  
Ehsan Allah-Kalteh ◽  
Aiuob Sofizadeh

Background: Phlebotomus papatasi is known as the main vector of zoonotic cutaneous leishmaniasis. This study aimed to investigate the effect of geographical and bioclimatic factors on the Ph. papatasi distribution. Methods: A total of 34 villages were selected, and sampling was performed three times using 120 sticky traps in each selected village. All the collected species were mounted and identified their species. The densities of Ph. papatasi were measured in all the villages and entered into ArcMap as a point layer. The required bioclimatic and environmental vari- ables were extracted from the global climate database and The normalized difference vegetation index was obtained from the MODIS satellite imagery, also, all variables entered into ArcMap as raster layers, so The numerical value of each independent variable in the cell where the selected village is located in this, was extracted using spatial analyst tools and the value to point submenu. All the data were finally entered into IBM SPSS, and the relationship was exam- ined between the number of collected Ph. papatasi and the independent variables using Spearman's correlation test. Results: A total of 1773 specimens of Ph. papatasi were collected. The findings of this study showed that max tem­perature of warmest month, temperature annual range, temperature seasonality, mean diurnal range, precipitation sea­sonality, mean temperature of driest and warmest quarter were positively associated with the density of Ph. papatasi. Conclusion: Air temperature and precipitation were shown as the most significant factors in the distribution of Ph. pa­patasi.


Insects ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 871
Author(s):  
Lesley Bell-Sakyi ◽  
Alexandra Beliavskaia ◽  
Catherine S. Hartley ◽  
Laura Jones ◽  
Lisa Luu ◽  
...  

Endosymbiotic intracellular bacteria of the genus Wolbachia are harboured by many species of invertebrates. They display a wide range of developmental, metabolic and nutritional interactions with their hosts and may impact the transmission of arboviruses and protozoan parasites. Wolbachia have occasionally been isolated during insect cell line generation. Here, we report the isolation of two strains of Wolbachia, wPip and wPap, during cell line generation from their respective hosts, the mosquito Culex pipiens and the sand fly Phlebotomus papatasi. wPip was pathogenic for both new C. pipiens cell lines, CPE/LULS50 and CLP/LULS56, requiring tetracycline treatment to rescue the lines. In contrast, wPap was tolerated by the P. papatasi cell line PPL/LULS49, although tetracycline treatment was applied to generate a Wolbachia-free subline. Both Wolbachia strains were infective for a panel of heterologous insect and tick cell lines, including two novel lines generated from the sand fly Lutzomyia longipalpis, LLE/LULS45 and LLL/LULS52. In all cases, wPip was more pathogenic for the host cells than wPap. These newly isolated Wolbachia strains, and the novel mosquito and sand fly cell lines reported here, will add to the resources available for research on host–endosymbiont relationships, as well as on C. pipiens, P. papatasi, L. longipalpis and the pathogens that they transmit.


2021 ◽  
Author(s):  
Tatiana Sulesco ◽  

Phlebotomine sand flies are vectors of several infectious pathogens, including parasitic protozoans of the genus Leishmania and phleboviruses. Increasing sand fly biting nuisance reported by residents from southern Republic of Moldova since 2011 initiated this study. Ceadir-Lunga, a semi-urban locality in southern Republic of Moldova was selected for seasonal sand fly collections outdoors and indoors in 2015 and 2017 using CDC light traps and manual aspirators. Continuous trapping showed markedly longer activity of P. papatasi indoors. Specimens were collected from first aspirations in the second half of June until last collections in mid-September, suggesting that the actual indoor activity of P. papatasi may have been longer. Low numbers of trapped specimens do not allow make accurate conclusions regarding the seasonal dynamics.


Author(s):  
C Calvete ◽  
S Delacour ◽  
R V Oropeza-Velasquez ◽  
R Estrada ◽  
M P Sarto ◽  
...  

Abstract Rabbit hemorrhagic disease (RHD) is caused by a lagovirus mainly affecting European rabbits (Oryctolagus cuniculus), although other European and North American lagomorph species are also susceptible to fatal infection by the new viral variant RHDV2/b. In the present work, direct mechanical transmission of the rabbit hemorrhagic disease virus (RHDV2/b variant) by the hematophagous Diptera Aedes albopictus (Skuse) (Diptera: Culicidae) and the sand fly Phlebotomus papatasi (Scopoli) (Diptera: Psychodidae) was tested. For each species, six and three laboratory rabbits were exposed to bites of dipterous females partially fed on RHDV2/b viral suspension 2 h and 24 h prior to exposure, respectively. The rabbits were then monitored for clinical changes and mortality for 35 d, and seroconversion was assessed by indirect ELISA. No rabbit died or showed clinical signs of disease, and seroconversion was recorded in two rabbits challenged with P. papatasi females fed the viral suspension 2 h prior to exposure. The number of RHDV2/b RNA copies/female was higher in Ae. albopictus than in P. papatasi but the decrease over time of RNA load in Ae. albopictus was greater than that in P. papatasi. The results of this study suggest the inability of Ae. albopictus to serve as a direct mechanical vector of RHDV2/b, but sand flies could play a role in the local transmission of RHD.


Author(s):  
Faizan Hassan ◽  
Krishn Pratap Singh ◽  
Pushkar Shivam ◽  
Vahab Ali ◽  
Diwakar Singh Dinesh

Abstract Phlebotomus argentipes is an established vector for Visceral leishmaniasis prevalent in the Indian subcontinent. Insect Glutathione S-transferases (GST) enzyme plays a pivotal role in the metabolism of xenobiotics and chemical insecticides. We report herein the identification and characterization of a delta class GST from the sandfly, P. argentipes. The resulting clone (rParg-GSTδ) is successfully sequenced, which revealed 76.43% and 66.32% gene identity with GST from Phlebotomus papatasi (Scopoli; Diptera: Psychodidae) and Lutzomiya longipalpis (Lutz and Neiva; Diptera: Psychodidae), respectively. The identified rParg-GST amino acid Blast results revealed 82.6% homology to delta class GST of Phlebotomus papatasi and more than 50% homology to Lepidoptera which comprises butterflies and moths. The Phylogenetic analysis of Parg-GST with different classes of Insect GSTs further supported its classification as delta class. A functional recombinant Parg-GSTδ protein (rParg-GSTδ) was expressed in Escherichia coli (Migula; Enterobacterales: Enterobacteriaceae) cells in a soluble form, purified to homogeneity and found to be active against a substrate 1-chloro-2,4-dintrobenzene (CDNB) and lipid peroxidation by-product 4-Hydrxynonenal (4-HNE). Interestingly, rParg-GSTδ demonstrates high dehydrochlorination activity against dichlorodiphenyltrichloroethane (DDT) i.e., 16.27 nM/µg in high performance liquid chromatography (HPLC) assay. These results provide evidence of direct DDT metabolism property exhibited by P. argentipes GST and set the foundation to decipher the metabolic resistance mechanism in P. argentipes against insecticides.


2021 ◽  
Author(s):  
Suman Karmakar ◽  
Supriya Nath ◽  
Biswajyoti Sarkar ◽  
Sondipon Chakraborty ◽  
Sharmistha Paul ◽  
...  

Drawing of host blood is a natural phenomenon during the bite of blood-probing insect vectors. Along with the blood meal, the vectors introduce salivary components and a trail of microbiota. In the case of infected vectors, the related pathogen accompanies the aforementioned biological components. In addition to Anopheles gambiae or Anopheles stephensi, the bites of other nonmalarial vectors cannot be ignored in malaria-endemic regions. Similarly, the bite incidence of Phlebotomus papatasi cannot be ignored in visceral leishmaniasis-endemic regions. Even the chances of getting bitten by uninfected vectors are higher than the infected vectors. We have discussed the probability or possibility of uninfected, infected, and/or nonvector’s saliva and gut microbiota as a therapeutic option leading to the initial deterrent to pathogen establishment.


Sign in / Sign up

Export Citation Format

Share Document