scholarly journals A Combined Experimental and Numerical Study of Laminar and Turbulent Non-piloted Oxy-fuel Jet Flames Using a Direct Comparison of the Rayleigh Signal

2015 ◽  
Vol 97 (1) ◽  
pp. 231-262 ◽  
Author(s):  
Franziska Hunger ◽  
Meor F. Zulkifli ◽  
Benjamin A. O. Williams ◽  
Frank Beyrau ◽  
Christian Hasse
Keyword(s):  
Author(s):  
Andrew R. Hutchins ◽  
James D. Kribs ◽  
Richard D. Muncey ◽  
Kevin M. Lyons

The aim of this investigation is to determine the effects of confinement on the stabilization of turbulent, lifted methane (CH4) jet flames. A confinement cylinder (stainless steel) separates the coflow from the ambient air and restricts excess room air from being entrained into the combustion chamber, and thus produces varying stabilization patterns. The experiments were executed using fully confined, semi-confined, and unconfined conditions, as well as by varying fuel flow rate and coflow velocity (ambient air flowing in the same direction as the fuel jet). Methane flames experience liftoff and blowout at well-known conditions for unconfined jets, however, it was determined that with semi-confined conditions the flame does not experience blowout. Instead of the conventional unconfined stabilization patterns, an intense, intermittent behavior of the flame was observed. This sporadic behavior of the flame, while under semi-confinement, was determined to be a result from the restricted oxidizer access as well as the asymmetrical boundary layer that forms due to the viewing window. While under full confinement the flame behaved in a similar method as while under no confinement (full ambient air access). The stable nature of the flame while fully confined lacked the expected change in leading edge fluctuations that normally occur in turbulent jet flames. These behaviors address the combustion chemistry (lack of oxygen), turbulent mixing, and heat release that combine to produce the observed phenomena.


1998 ◽  
Author(s):  
J.-H. Kim ◽  
Y. Yoon ◽  
J.-Y. Choi ◽  
I.-S. Jeung

2021 ◽  
Author(s):  
Artur Tyliszczak ◽  
Agnieszka Wawrzak

Abstract The large eddy simulation (LES) method combined with the Eulerian stochastic field approach has been used to study excited lifted hydrogen flames in a stream of hot co-flow air in a configuration closely corresponding to the so-called Cabra flame. The excitation is obtained by adding to an inlet velocity profile three types of forcing ((i) axial; (ii) flapping; (iii) combination of both) with amplitude of 15% of the fuel jet velocity and frequency corresponding to the Strouhal numbers St=0.30, 0.45, 0.60 and 0.75. It is shown that such a type of forcing significantly changes the lift-off height Lh of the flame and its global shape, resulting in a flame occupying large volume or the flame, which downstream the nozzle transforms from the circular one into a quasi-planar flame. Both the Lh and their spreading angles of the flames were found to be a function of the type of the forcing and its frequency. The minimum value of Lh has been found for the case with the combination of axial and flapping forcing at the frequency close to the preferred one in the unexcited configuration. The impact of the flapping forcing manifested through a widening of the flame in the flapping direction. It was shown that the excitation can significantly increase the level of the velocity and temperature fluctuations intensifying the mixing process. The computational results are validated based on the solutions obtained for a non-excited flame for which experimental data are available.


1980 ◽  
Vol 22 (5-6) ◽  
pp. 211-216 ◽  
Author(s):  
TAKESHI KAWAMURA ◽  
KATSUO ASATO ◽  
TAMOTSU MAZAKI

2013 ◽  
Vol 17 (4) ◽  
pp. 1207-1219 ◽  
Author(s):  
Zouhair Riahi ◽  
Ali Mergheni ◽  
Jean-Charles Sautet ◽  
Ben Nasrallah

The practical combustion systems such as combustion furnaces, gas turbine, engines, etc. employ non-premixed combustion due to its better flame stability, safety, and wide operating range as compared to premixed combustion. The present numerical study characterizes the turbulent flame of methane-air in a coaxial burner in order to determine the effect of airflow on the distribution of temperature, on gas consumption and on the emission of NOx. The results in this study are obtained by simulation on FLUENT code. The results demonstrate the influence of different parameters on the flame structure, temperature distribution and gas emissions, such as turbulence, fuel jet velocity, air jet velocity, equivalence ratio and mixture fraction. The lift-off height for a fixed fuel jet velocity is observed to increase monotonically with air jet velocity. Temperature and NOx emission decrease of important values with the equivalence ratio, it is maximum about the unity.


2012 ◽  
Vol 159 (11) ◽  
pp. 3342-3352 ◽  
Author(s):  
Alexis Sevault ◽  
Matthew Dunn ◽  
Robert S. Barlow ◽  
Mario Ditaranto

Sign in / Sign up

Export Citation Format

Share Document