Short-term handling stress affects the humoral immune responses of juvenile Atlantic cod, Gadus morhua

2014 ◽  
Vol 22 (4) ◽  
pp. 1283-1293 ◽  
Author(s):  
Christopher Marlowe A. Caipang ◽  
Effrosyni Fatira ◽  
Carlo C. Lazado ◽  
Michail Pavlidis
2019 ◽  
Author(s):  
Ria Goswami ◽  
Ashley N. Nelson ◽  
Joshua J. Tu ◽  
Maria Dennis ◽  
Liqi Feng ◽  
...  

ABSTRACTTo achieve long-term viral remission in HIV-infected children, novel strategies beyond early anti-retroviral therapy (ART) will be necessary. Identifying clinical predictors of time to viral rebound upon ART interruption will streamline the development of novel therapeutic strategies and accelerate their evaluation in clinical trials. However, identification of these biomarkers is logistically challenging in infants, due to sampling limitations and potential risks of treatment interruption. To facilitate identification of biomarkers predicting viral rebound, we have developed an infant rhesus macaque (RM) model of oral SHIV.CH505.375H.dCT challenge and analytical treatment interruption (ATI) after short-term ART. We used this model to characterize SHIV replication kinetics and virus-specific immune responses during short-term ART or post-ATI and demonstrated plasma viral rebound in 5 out of 6 (83%) infants. We observed a decline in humoral immune responses and partial dampening of systemic immune activation upon initiation of ART in these infants. Furthermore, we documented that infant and adult macaques have similar SHIV replication and rebound kinetics and equally potent virus-specific humoral immune responses. Finally, we validated our models by confirming a well-established correlate of time to viral rebound, namely pre-ART plasma viral load, as well as identified additional potential humoral immune correlates. Thus, this model of infant ART and viral rebound can be used and further optimized to define biomarkers of viral rebound following long-term ART as well as to pre-clinically assess novel therapies to achieve a pediatric HIV functional cure.IMPORTANCENovel interventions that do not rely on daily adherence to ART are needed to achieve sustained viral remission for perinatally infected children who currently rely on lifelong ART. Considering the risks and expense associated with ART-interruption trials, identification of biomarkers of viral rebound will prioritize promising therapeutic intervention strategies, including anti-HIV Env protein therapeutics. However, comprehensive studies to identify those biomarkers are logistically challenging in human infants, demanding the need for relevant non-human primate models of HIV rebound. In this study, we developed an infant RM model of oral Simian/Human Immunodeficiency virus infection expressing clade C HIV Env, and short-term ART followed by ATI, longitudinally characterizing immune responses to viral infection during ART and post-ATI. Additionally, we compared this infant RM model to an analogous adult RM rebound model and identified virologic and immunologic correlates of time to viral rebound post-ATI.


Aquaculture ◽  
2009 ◽  
Vol 295 (1-2) ◽  
pp. 110-115 ◽  
Author(s):  
Christopher Marlowe A. Caipang ◽  
Ingvild Berg ◽  
Monica F. Brinchmann ◽  
Viswanath Kiron

mBio ◽  
2019 ◽  
Vol 10 (4) ◽  
Author(s):  
Ria Goswami ◽  
Ashley N. Nelson ◽  
Joshua J. Tu ◽  
Maria Dennis ◽  
Liqi Feng ◽  
...  

ABSTRACT To achieve long-term viral remission in human immunodeficiency virus (HIV)-infected children, novel strategies beyond early antiretroviral therapy (ART) will be necessary. Identifying clinical predictors of the time to viral rebound upon ART interruption will streamline the development of novel therapeutic strategies and accelerate their evaluation in clinical trials. However, identification of these biomarkers is logistically challenging in infants, due to sampling limitations and the potential risks of treatment interruption. To facilitate the identification of biomarkers predicting viral rebound, we have developed an infant rhesus macaque (RM) model of oral simian-human immunodeficiency virus (SHIV) SHIV.CH505.375H.dCT challenge and analytical treatment interruption (ATI) after short-term ART. We used this model to characterize SHIV replication kinetics and virus-specific immune responses during short-term ART or after ATI and demonstrated plasma viral rebound in 5 out of 6 (83%) infants. We observed a decline in humoral immune responses and partial dampening of systemic immune activation upon initiation of ART in these infants. Furthermore, we monitored SHIV replication and rebound kinetics in infant and adult RMs and found that both infants and adults demonstrated equally potent virus-specific humoral immune responses. Finally, we validated our models by confirming a well-established correlate of the time to viral rebound, namely, the pre-ART plasma viral load, as well as identified additional potential humoral immune correlates. Thus, this model of infant ART and viral rebound can be used and further optimized to define biomarkers of viral rebound following long-term ART as well as to preclinically assess novel therapies to achieve a pediatric HIV functional cure. IMPORTANCE Novel interventions that do not rely on daily adherence to ART are needed to achieve sustained viral remission for perinatally infected children, who currently rely on lifelong ART. Considering the risks and expense associated with ART interruption trials, the identification of biomarkers of viral rebound will prioritize promising therapeutic intervention strategies, including anti-HIV Env protein therapeutics. However, comprehensive studies to identify those biomarkers are logistically challenging in human infants, demanding the need for relevant nonhuman primate models of HIV rebound. In this study, we developed an infant RM model of oral infection with simian-human immunodeficiency virus expressing clade C HIV Env and short-term ART followed by ATI, longitudinally characterizing the immune responses to viral infection during ART and after ATI. Additionally, we compared this infant RM model to an analogous adult RM rebound model and identified virologic and immunologic correlates of the time to viral rebound after ATI.


2008 ◽  
Vol 21 (3) ◽  
pp. 505-518 ◽  
Author(s):  
Riny Janssen ◽  
Karen A. Krogfelt ◽  
Shaun A. Cawthraw ◽  
Wilfrid van Pelt ◽  
Jaap A. Wagenaar ◽  
...  

SUMMARY Campylobacter is a major cause of acute bacterial diarrhea in humans worldwide. This study was aimed at summarizing the current understanding of host mechanisms involved in the defense against Campylobacter by evaluating data available from three sources: (i) epidemiological observations, (ii) observations of patients, and (iii) experimental observations including observations of animal models and human volunteer studies. Analysis of available data clearly indicates that an effective immune system is crucial for the host defense against Campylobacter infection. Innate, cell-mediated, and humoral immune responses are induced during Campylobacter infection, but the relative importance of these mechanisms in conferring protective immunity against reinfection is unclear. Frequent exposure to Campylobacter does lead to the induction of short-term protection against disease but most probably not against colonization. Recent progress in the development of more suitable animal models for studying Campylobacter infection has opened up possibilities to study the importance of innate and adaptive immunity during infection and in protection against reinfection. In addition, advances in genomics and proteomics technologies will enable more detailed molecular studies. Such studies combined with better integration of host and pathogen research driven by epidemiological findings may truly advance our understanding of Campylobacter infection in humans.


1997 ◽  
Vol 27 (11) ◽  
pp. 1285-1291 ◽  
Author(s):  
M. N. KOLOPP-SARDA ◽  
D. A. MONERET-VAUTRIN ◽  
B. GOBERT ◽  
G. KANNY ◽  
M. BRODSCHII ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document