Effects of modified dispersion relation on the thermodynamics of Achúcarro-Ortiz horizon and tunneling radiation probability

2013 ◽  
Vol 346 (2) ◽  
pp. 493-495 ◽  
Author(s):  
A. Farmany ◽  
H. Noorizadeh ◽  
S. S. Mortazavi
2018 ◽  
Vol 2018 ◽  
pp. 1-7
Author(s):  
Shovon Biswas ◽  
Mir Mehedi Faruk

Planck scale inspired theories which are also often accompanied with maximum energy and/or momentum scale predict deformed dispersion relations compared to ordinary special relativity and quantum mechanics. In this paper, we resort to the methods of statistical mechanics in order to determine the effects of a deformed dispersion relation along with an upper bound in the partition function that maximum energy and/or momentum scale can have on the thermodynamics of photon gas. We also analyzed two distinct quantum gravity models in this paper.


2020 ◽  
Vol 80 (7) ◽  
Author(s):  
Cláudio Gomes

Abstract The weak field limit of the nonminimally coupled Boltzmann equation is studied, and relations between the invariant Bardeen scalar potentials are derived. The Jean’s criterion for instabilities is found through the modified dispersion relation. Special cases are scrutinised and considerations on the model parameters are discussed for Bok globules.


2020 ◽  
Vol 129 (3) ◽  
pp. 30002
Author(s):  
Arnab Mukherjee ◽  
Sunandan Gangopadhyay ◽  
Manjari Dutta

2019 ◽  
Vol 35 (10) ◽  
pp. 2050061
Author(s):  
Z. Luo ◽  
X. G. Lan

It is suggested that the dispersion relation might be corrected at higher energy scales and lead to the deformed Hamilton–Jacobi equation. In this paper, we use the correction to investigate the fermion tunneling radiation for Demianski–Newman black hole spacetime, and the result shows that the corresponding Hawking temperature and the black hole entropy are related to the angular parameters of the black hole coordinates.


Sign in / Sign up

Export Citation Format

Share Document