modified dispersion relation
Recently Published Documents


TOTAL DOCUMENTS

55
(FIVE YEARS 9)

H-INDEX

9
(FIVE YEARS 0)

2021 ◽  
Vol 2021 (11) ◽  
pp. 048
Author(s):  
Jose Maria Ezquiaga ◽  
Wayne Hu ◽  
Macarena Lagos ◽  
Meng-Xiang Lin

Abstract We study the cosmological propagation of gravitational waves (GWs) beyond general relativity (GR) across homogeneous and isotropic backgrounds. We consider scenarios in which GWs interact with an additional tensor field and use a parametrized phenomenological approach that generically describes their coupled equations of motion. We analyze four distinct classes of derivative and non-derivative interactions: mass, friction, velocity, and chiral. We apply the WKB formalism to account for the cosmological evolution and obtain analytical solutions to these equations. We corroborate these results by analyzing numerically the propagation of a toy GW signal. We then proceed to use the analytical results to study the modified propagation of realistic GWs from merging compact binaries, assuming that the GW signal emitted is the same as in GR. We generically find that tensor interactions lead to copies of the originally emitted GW signal, each one with its own possibly modified dispersion relation. These copies can travel coherently and interfere with each other leading to a scrambled GW signal, or propagate decoherently and lead to echoes arriving at different times at the observer that could be misidentified as independent GW events. Depending on the type of tensor interaction, the detected GW signal may exhibit amplitude and phase distortions with respect to a GW waveform in GR, as well as birefringence effects. We discuss observational probes of these tensor interactions with both individual GW events, as well as population studies for both ground- and space-based detectors.


2021 ◽  
Vol 81 (4) ◽  
Author(s):  
Ahmed Farag Ali ◽  
Barun Majumder

AbstractVarious approaches to Quantum Gravity suggest an existence of a minimal measurable length. The cost to have such minimal length could be modified uncertainty principle, modified dispersion relation, non-commutative geometry or breaking of continuous Lorentz symmetry. In this paper, we propose that minimal length can be obtained naturally through spin–orbit interaction. We consider Dresselhaus anisotropic spin–orbit interaction as the perturbative Hamiltonian. When applied to a particle, it implies that the space, which seizes this particle, should be quantized in terms of units that depend on particle’s mass. This suggests that all measurable lengths in the space are quantized in units depending on existent mass and the Dresselhaus coupling constant. On one side, this indicates a breakdown of the space continuum picture near the scale of tabletop experiments, and on the other side, it proposes that spin–orbit interaction is a possible quantum gravity effect at low energy scale that leads naturally to space quantization.


Author(s):  
Barun Majumder ◽  
Ahmed Farag Ali

Various approaches to Quantum Gravity suggest an existence of a minimal measurable length. The cost to have such minimal length could be modified uncertainty principle, modified dispersion relation, non-commutative geometry or breaking of continuous Lorentz symmetry. In this paper, we propose that minimal length can be obtained naturally through spin-orbit interaction. We consider Dresselhaus anisotropic spin-orbit interaction as the perturbative Hamiltonian. When applied to a particle, it implies that the space, which seizes this particle, should be quantized in terms of units that depend on particle’s mass. This suggests that all measurable lengths in the space are quantized in units depending on existent mass and the Dresselhaus coupling constant. On one side, this indicates a breakdown of the space continuum picture near the scale of tabletop experiments, and on the other side, it proposes that spin-orbit interaction is a possible quantum gravity effect at low energy scale that leads naturally to space quantization.


2020 ◽  
Vol 80 (8) ◽  
Author(s):  
Andrea Dapor ◽  
Klaus Liegener

Abstract It is expected that the quantum nature of spacetime leaves its imprint in all semiclassical gravitational systems, at least in certain regimes, including gravitational waves. In this paper we investigate such imprints on gravitational waves within a specific framework: space is assumed to be discrete (in the form of a regular cubic lattice), and this discrete geometry is quantised following Dirac’s canonical quantisation scheme. The semiclassical behavior is then extracted by promoting the expectation value of the Hamiltonian operator on a semiclassical state to an effective Hamiltonian. Considering a family of semiclassical states representing small tensor perturbations to Minkowski background, we derive a quantum-corrected effective wave equation. The deviations from the classical gravitational wave equation are found to be encoded in a modified dispersion relation and controlled by the discreteness parameter of the underlying lattice. For finite discretisations, several interesting effects appear: we investigate the thermodynamical properties of these modified gravitons and, under certain assumptions, derive the tensor power spectrum of the cosmic microwave background. The latter is found to deviate from the classical prediction, in that an amplification of UV modes takes place. We discuss under what circumstances such effect can be in agreement with observations.


2020 ◽  
Vol 80 (7) ◽  
Author(s):  
Cláudio Gomes

Abstract The weak field limit of the nonminimally coupled Boltzmann equation is studied, and relations between the invariant Bardeen scalar potentials are derived. The Jean’s criterion for instabilities is found through the modified dispersion relation. Special cases are scrutinised and considerations on the model parameters are discussed for Bok globules.


2020 ◽  
Vol 129 (3) ◽  
pp. 30002
Author(s):  
Arnab Mukherjee ◽  
Sunandan Gangopadhyay ◽  
Manjari Dutta

2018 ◽  
Vol 2018 ◽  
pp. 1-6
Author(s):  
Ping Li ◽  
Miao He ◽  
Jia-Cheng Ding ◽  
Xian-Ru Hu ◽  
Jian-Bo Deng

In this paper, the thermodynamic property of charged AdS black holes is studied in rainbow gravity. By the Heisenberg Uncertainty Principle and the modified dispersion relation, we obtain deformed temperature. Moreover, in rainbow gravity we calculate the heat capacity in a fixed charge and discuss the thermal stability. We also obtain a similar behaviour with the liquid-gas system in extending phase space (including P and r) and study its critical behavior with the pressure given by the cosmological constant and with a fixed black hole charge Q. Furthermore, we study the Gibbs function and find its characteristic swallow tail behavior, which indicates the phase transition. We also find that there is a special value about the mass of test particle which would lead the black hole to zero temperature and a diverging heat capacity with a fixed charge.


Sign in / Sign up

Export Citation Format

Share Document