On the similarity of 239Pu α $\alpha$ -activity histograms when the angular velocities of the Earth diurnal rotation, orbital movement and rotation of collimators are equalized

2015 ◽  
Vol 361 (1) ◽  
Author(s):  
S. E. Shnoll ◽  
I. A. Rubinstein ◽  
S. N. Shapovalov ◽  
A. A. Tolokonnikova ◽  
V. A. Shlektaryov ◽  
...  
1735 ◽  
Vol 39 (438) ◽  
pp. 98-105 ◽  

The centrifugal force arising from the diurnal rotation of the Earth, depresseth it at the poles, and renders it protuberant at the Equator


1894 ◽  
Vol 55 (331-335) ◽  
pp. 210-217 ◽  

In a paper which was read before the Royal Society in June, 1890, I showed that the principal phenomena of terrestrial magnetism and the secular changes in its horizontal and vertical components could be explained on the assumption of an electro-dynamic substance (presumably liquid or gaseous) rotating within the crust of the earth in the plane of the ecliptic, and a little slower than the diurnal rotation. By means of some electro-mechanism, new to experimental science, which I termed a magnetarium, the period of backward rotation of the internal electro-dynamic sphere required for the secular variations of the magnetic elements on different parts of the earth’s surface was found to be 960 years, or 22.5 minutes of a degree annually. It was also demonstrated that the inclination of the axes of the electro-dynamic and terrestrial globes to each other of 20° 30', was the cause of the inequality of the declination periods about the same meridian in the northern and southern hemispheres; as instanced in the short period of outward westerly declination at London, and the long period of outward westerly declination at the Cape of Good Hope and St. Helena.


In my paper on “The Gravitational Stability of the Earth,” dynamical arguments were adduced in favour of the hypothesis that the distribution of density within the earth is such that the surfaces of equal density present, in addition to the inequalities depending upon the diurnal rotation, other inequalities which can be specified by spherical harmonics of the first, second, and third degrees. If this is the case, the surface of the earth, by which I mean the surface of the lithosphere, should present corresponding inequalities, and so also should the equipotential surfaces. Analytically, if the density ρ is given by an equation of the form ρ = f 0 ( r ) + ϵ 1 f 1 ( r )S 1 + ϵ 2 f 2 ( r )S 2 + ϵ 3 f 3 ( r )S 3 , (1) where f 0 ( r ), f 1 ( r ), . . . are functions of the distance r from the centre, S 1 , S 2 , S 3 are spherical surface harmonics of degrees indicated by the suffixes, and ϵ 1 , ϵ 2 , ϵ 3 are small coefficients, then the surface should have an equation of the form r = a + α 1 S 1 + α 2 S 2 + α 3 S 3 , (2) where a and α 1 , α 2 , α 3 are constants, and the α 's are small. The elevations and depressions of the lithosphere should be, at least in their main features, expressible by a formula of this type. The actual elevations and depressions are difficult to determine, because all that can be found by observation is the amount of elevation above, or depression below, a particular equipotential surface, the geoid , or the surface of the ocean, continued beneath the continents. For a first approximation the potential due to such a distribution of density as is expressed by (1) within a surface expressed by (2) would be given by formulæ of the type V = F 0 ( r ) + β 1 F 1 ( r )S 1 + β 2 F 2 ( r )S 2 + β 3 F 3 ( r )S 3 , ( r < a )


Author(s):  
AslıPınar Tan

Based on measured astronomical position data of heavenly objects in the Solar System and other planetary systems, all bodies in space seem to move in some kind of elliptical motion with respect to each other. According to Kepler&rsquo;s 1st Law, &ldquo;orbit of a planet with respect to the Sun is an ellipse, with the Sun at one of the two foci.&rdquo; Orbit of the Moon with respect to Earth is also distinctly elliptical, but this ellipse has a varying eccentricity as the Moon comes closer to and goes farther away from the Earth in a harmonic style along a full cycle of this ellipse. In this paper, our research results are summarized, where it is first mathematically shown that the &ldquo;distance between points around any two different circles in three dimensional space&rdquo; is equivalent to the &ldquo;distance of points around a vector ellipse to another fixed or moving point, as in two dimensional space&rdquo;. What is done is equivalent to showing that bodies moving on two different circular orbits in space vector wise behave as if moving on an elliptical path with respect to each other, and virtually seeing each other as positioned at an instantaneously stationary point in space on their relative ecliptic plane, whether they are moving with the same angular velocity, or different but fixed angular velocities, or even with different and changing angular velocities with respect to their own centers of revolution. This mathematical revelation has the potential to lead to far reaching discoveries in physics, enabling more insight into forces of nature, with a formulation of a new fundamental model regarding the motions of bodies in the Universe, including the Sun, Planets, and Satellites in the Solar System and elsewhere, as well as at particle and subatomic level. Based on the demonstrated mathematical analysis, as they exhibit almost fixed elliptic orbits relative to one another over time, the assertion is made that the Sun, the Earth, and the Moon must each be revolving in their individual circular orbits of revolution in space. With this expectation, individual orbital parameters of the Sun, the Earth, and the Moon are calculated based on observed Earth to Sun and Earth to Moon distance data, also using analytical methods developed as part of this research to an approximation. This calculation and analysis process have revealed additional results aligned with observation, and this also supports our assertion that the Sun, the Earth, and the Moon must actually be revolving in individual circular orbits.


Heraclides of Pontus (c. 388–310 BCE), a Platonic philosopher, worked in various literary genres and wrote on such topics as psychology, politics, literature, history, geography, astronomy and the philosophy of nature. Nothing is preserved. The present publication contains a collection of the testimonies about Heraclides’ astronomical writings. He thought of an infinite universe, in fact believing that every star is a kosmos, located in the infinite either. He famously advanced the theory of terrestrial rotation, hypothesizing that the apparent diurnal rotation of the heavens is better explained by the rotation of the Earth, and in this context correctly observed that, unlike other planets, Venus as morning and evening star has the maximum elongation from the Sun’s position (that is to say is never located far from the Sun). The evidences are translated and numbered according to a new edition by Schütrumpf et al. 2008.


Isis ◽  
1937 ◽  
Vol 26 (2) ◽  
pp. 392-402 ◽  
Author(s):  
Grant McColley

2004 ◽  
Vol 14 (5) ◽  
pp. 367-373 ◽  
Author(s):  
Ronita L. Cromwell ◽  
Peter E. Pidcoe ◽  
Lori A. Griffin ◽  
Tanya Sotillo ◽  
Daniel Ganninger ◽  
...  

The purpose of this study was to determine adaptations in head stability resulting from altered gaze control and vision during over-ground walking. Using over-ground walking permitted adaptations in walking velocity and cadence that are otherwise not possible during treadmill walking or walking-in-place. Gaze control and vision were manipulated by having 20 young adult subjects 1) walk naturally, 2) view a distant, earth-fixed target to enhance the vestibulo-ocular reflex (VOR), 3) view a head-fixed target to suppress the VOR, and 4) walk in darkness. Horizontal head and trunk angular velocities in space, walking velocity and cadence were measured. Root-mean-square head and trunk angular velocities were calculated and frequency analyses determined head-trunk movement patterns. Results demonstrated that when given the opportunity, subjects slowed down and decreased cadence in response to challenging tasks. Despite strongly reduced walking velocity and cadence, walking in darkness proved most challenging for head stabilization, indicating the importance of vision during this process. Viewing the earth-fixed target demonstrated the greatest head stability thereby, facilitating gaze stabilization. However, comparisons between the earth-fixed and head-fixed target conditions suggest a reciprocal relationship where gaze stability also facilitates head stability. This contribution of gaze stability to head stability is more important than vision alone as the head stabilization response was diminished during the VOR suppressed condition.


2019 ◽  
Vol 127 ◽  
pp. 02014 ◽  
Author(s):  
Vladimir Kuznetsov

Principally new model of the magnetic field of the Hot Earth is proposed. Unlike the commonly accepted approach which considers that the Earth’s temperature doesn’t increase because heat released under selfgravitation is removed through radiation our model assumes that early substance of the Earth heated up to 30 000 K was a superheated and overcompressed vapour. Cooling the Earth substance was condensing. The system was expanding adiabatically that governed the character of the Earth enlargement. This scheme origins from the phase transition (PT) of condensation-evaporation under the benefit of condensation. PT provides the heat, geodynamics of expansion and the Earth’s magnetic field (EMF). The high temperature of the substance causes its thermoionization, whereas PT operation relating to mass transfer initiates charges separation and generation of the double electric layer (DEL). A diurnal rotation of DEL induces a weak initial EMF which enhances then at the expense of the Hall dynamo (Hall current) inside PT area. The benefit of evaporation causes the Earth compression and reversal of the EMF polarity. The approach we develop provides an insight into features of the magnetic field of the planets and satellites at the Sun system.


Sign in / Sign up

Export Citation Format

Share Document