gravitational stability
Recently Published Documents


TOTAL DOCUMENTS

94
(FIVE YEARS 13)

H-INDEX

22
(FIVE YEARS 3)

2021 ◽  
Vol 83 (10) ◽  
Author(s):  
Johan T. Gilchrist ◽  
A. Mark Jellinek

2021 ◽  
Vol 79 (3) ◽  
pp. 121-147
Author(s):  
George Veronis

Hydrographic station data, consisting principally of temperature and salinity determinations, have been used by physical oceanographers to develop a climatological picture of the distribution of these quantities in the oceans of the world. Density as determined by Knudsen's formula, taken together with hydrostatic and geostrophic dynamics, also provides a crude picture of oceanic flow. However, the data probably contain substantially more information than has been derived from them in the past.The quantity that is orthogonal to potential-density curves in the S plane is suggested as a useful variable to complement the information contained in potential density. The derivation of this quantity, denoted by τ in this paper, is straightforward. A polynomial expression for τ that is suitable for computer calculations of τ from hydrographic station data is given. Shown are examples of hydrographic station data from the Atlantic plotted on the τσ diagram. The information contained in the τσ diagram shows many of the features exhibited in the TS plane. Vertical sections of τ appear to provide information about mixing in different parts of the Atlantic. The distribution of τ for abyssal waters at selected stations in the oceans of the world resembles the distribution of abyssal density as plotted by Lynn and Reid (1968). From the data presented, it appears that τ may serve as a good tracer for abyssal water movements.Since τ is defined to be orthogonal to σ, the expectation is that τ is a dynamically passive variable. However, since σ does not correlate with abyssal densities, it appears to lose dynamical significance at great depth, and τ assumes dynamical significance because of its orthogonality to σ. This unexpected feature leads to an exploration of the dynamical significance of σ. A natural starting point is the question of stability of abyssal water.A distinction is made between stability as determined by in situ determinations and as determined by the potential-density (σ) distribution. Simple examples are presented to show that analysis based on σ alone can lead to incorrect conclusions about gravitational stability of the water in the abyssal ocean. The reason is that seawater is a multicomponent thermodynamic system, and the thermodynamic coefficients are functions of pressure, salinity, and temperature. This functional dependence leads to adjustments in density as a water particle moves adiabatically in the vertical direction so that a layer of water that appears to be unstable near the surface may be stable (as determined by in situ determination) at great depth. A local potential density, which is simply the vertical integral of the in situ stability, is derived. This quantity gives a precise picture of gravitational stability in the vertical direction. Some distributions of local potential density are shown.Originally published May 15, 1972, in the Journal of Marine Research 30(2), 227???255.


Author(s):  
K.-U. Michel ◽  
M. Mugrauer

We present the latest results of an ongoing multiplicity survey of exoplanet hosts, which was initiated at the Astrophysical Institute and University Observatory Jena, using data from the second data release of the ESA-Gaia mission. In this study the multiplicity of 289 targets was investigated, all located within a distance of about 500 pc from the Sun. In total, 41 binary, and five hierarchical triple star systems with exoplanets were detected in the course of this project, yielding a multiplicity rate of the exoplanet hosts of about 16%. A total of 61 companions (47 stars, a white dwarf, and 13 brown dwarfs) were detected around the targets, whose equidistance and common proper motion with the exoplanet hosts were proven with their precise Gaia DR2 astrometry, which also agrees with the gravitational stability of most of these systems. The detected companions exhibit masses from about 0.016 up to 1.66 M⊙ and projected separations in the range between about 52 and 9,555 au.


2020 ◽  
Vol 501 (1) ◽  
pp. 1316-1335
Author(s):  
Zhe-Yu Daniel Lin ◽  
Chin-Fei Lee ◽  
Zhi-Yun Li ◽  
John J Tobin ◽  
Neal J Turner

ABSTRACT (Sub)millimetre dust opacities are required for converting the observable dust continuum emission to the mass, but their values have long been uncertain, especially in discs around young stellar objects. We propose a method to constrain the opacity κν in edge-on discs from a characteristic optical depth τ0,ν, the density ρ0, and radius R0 at the disc outer edge through κν = τ0,ν/(ρ0R0), where τ0,ν is inferred from the shape of the observed flux along the major axis, ρ0 from gravitational stability considerations, and R0 from direct imaging. We applied the 1D semi-analytical model to the embedded, Class 0, HH 212 disc, which has high-resolution data in Atacama Large Millimetre/submillimetre Array (ALMA) bands 9, 7, 6, and 3 and Very Large Array Ka band (λ = 0.43, 0.85, 1.3, 2.9, and 9.1 mm). The modelling is extended to 2D through RADMC-3D radiative transfer calculations. We find a dust opacity of κν ≈ 1.9 × 10−2, 1.3 × 10−2, and 4.9 × 10−3 cm2 g−1 of gas and dust for ALMA bands 7, 6, and 3, respectively, with uncertainties dependent on the adopted stellar mass. The inferred opacities lend support to the widely used prescription κλ = 2.3 × 10−2(1.3mm/λ) cm2 g−1 . We inferred a temperature of ∼45 K at the disc outer edge that increases radially inwards. It is well above the sublimation temperatures of ices such as CO and N2, which supports the notion that the disc chemistry cannot be completely inherited from the protostellar envelope.


Author(s):  
Christine N Mazzola ◽  
Carles Badenes ◽  
Maxwell Moe ◽  
Sergey E Koposov ◽  
Marina Kounkel ◽  
...  

Abstract We use observations from the APOGEE survey to explore the relationship between stellar parameters and multiplicity. We combine high-resolution repeat spectroscopy for 41,363 dwarf and subgiant stars with abundance measurements from the APOGEE pipeline and distances and stellar parameters derived using Gaia DR2 parallaxes from Sanders & Das (2018) to identify and characterise stellar multiples with periods below 30 years, corresponding to ΔRVmax≳ 3 km s−1, where ΔRVmax is the maximum APOGEE-detected shift in the radial velocities. Chemical composition is responsible for most of the variation in the close binary fraction in our sample, with stellar parameters like mass and age playing a secondary role. In addition to the previously identified strong anti-correlation between the close binary fraction and [Fe/H] we find that high abundances of α elements also suppress multiplicity at most values of [Fe/H] sampled by APOGEE. The anti-correlation between α abundances and multiplicity is substantially steeper than that observed for Fe, suggesting C, O, and Si in the form of dust and ices dominate the opacity of primordial protostellar disks and their propensity for fragmentation via gravitational stability. Near [Fe/H] = 0 dex, the bias-corrected close binary fraction (a < 10 au) decreases from ≈ 100 per cent at [α/H] = −0.2 dex to ≈ 15 per cent near [α/H] = 0.08 dex, with a suggestive turn-up to ≈20 per cent near [α/H] = 0.2. We conclude that the relationship between stellar multiplicity and chemical composition for sun-like dwarf stars in the field of the Milky Way is complex, and that this complexity should be accounted for in future studies of interacting binaries.


2020 ◽  
Vol 495 (1) ◽  
pp. 1227-1238
Author(s):  
Andrea Sacchi ◽  
Giuseppe Lodato ◽  
Claudia Toci ◽  
Valentina Motta

ABSTRACT A tidal disruption event (TDE) occurs when a star passes too close to a supermassive black hole and gets torn apart by its gravitational tidal field. After the disruption, the stellar debris form an expanding gaseous stream. The morphology and evolution of this stream are particularly interesting as it ultimately determines the observational properties of the event itself. In this work, we perform 3D hydrodynamical simulations of the TDE of a star modelled as a polytropic sphere of index γ = 5/3 and study the gravitational stability of the resulting gas stream. We provide an analytical solution for the evolution of the stream in the bound, unbound, and marginally bound cases, which allows us to describe the stream properties and analyse the time-scales of the physical processes involved, applying a formalism developed in star formation context. Our results are that, when fragmentation occurs, it is fuelled by the failure of pressure in supporting the gas against its self-gravity. We also show that a stability criterion that includes also the stream gas pressure proves to be far more accurate than one that only considers the black hole tidal forces, giving analytical predictions of the time evolution of the various forces associated with the stream. Our results point out that fragmentation occurs on time-scales longer compared with the observational windows of these events and is thus not expected to give rise to significant observational features.


Author(s):  
Ali Kazemi ◽  
Mahmood Roshan ◽  
Ivan De Martino ◽  
Mariafelicia De Laurentis

Abstract In this paper, we study the Jeans analysis in the context of energy–momentum-squared gravity (EMSG). More specifically we find the new Jeans mass for non-rotating infinite mediums as the smallest mass scale for local perturbations that can be stable against its own gravity. Furthermore, for rotating mediums, specifically for rotating thin disks in the context of EMSG, we find a new Toomre-like criterion for the local gravitational stability. Finally, the results are applied to a hyper-massive neutron star, as an astrophysical system. Using a simplified toy model we have shown that, for a positive (negative) value of the EMSG parameter $$\alpha $$α, the system is stable (unstable) in a wide range of $$\alpha $$α. On the other hand, no observational evidence has been reported on the existence of local fragmentation in HMNS. Naturally, this means that EMSG with positive $$\alpha $$α is more acceptable from the physical point of view.


Sign in / Sign up

Export Citation Format

Share Document