The African equatorial ionization anomaly response to the St. Patrick’s Day storms of March 2013 and 2015

2022 ◽  
Vol 367 (1) ◽  
Author(s):  
Olawale S. Bolaji ◽  
Bolarinwa J. Adekoya ◽  
Shola J. Adebiyi ◽  
Babatunde O. Adebesin ◽  
Stephen O. Ikubanni
2012 ◽  
Vol 117 (A10) ◽  
pp. n/a-n/a ◽  
Author(s):  
Jing Liu ◽  
Libo Liu ◽  
Biqiang Zhao ◽  
Yong Wei ◽  
Lianhuan Hu ◽  
...  

2009 ◽  
Vol 114 (A3) ◽  
pp. n/a-n/a ◽  
Author(s):  
N. Balan ◽  
K. Shiokawa ◽  
Y. Otsuka ◽  
S. Watanabe ◽  
G. J. Bailey

2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Frédéric Ouattara ◽  
Doua Allain Gnabahou ◽  
Christine Amory Mazaudier

We analyse the variability of foF2 at two West Africa equatorial ionization anomaly stations (Ouagadougou and Dakar) during three solar cycles (from cycle 20 to cycle 22), that is, from 1966 to 1998 for Ouagadougou and from 1971 to 1997 for Dakar. We examine the effect of the changing levels of solar extreme ultraviolet radiation with sunspot number. The study shows high correlation between foF2 and sunspot number (Rz). The correlation coefficient decreases from cycle 20 to cycle 21 at both stations. From cycle 21 to cycle 22 it decreases at Ouagadougou station and increases at Dakar station. The best correlation coefficient, 0.990, is obtained for Dakar station during solar cycle 22. The seasonal variation displays equinoctial peaks that are asymmetric between March and September. The percentage deviations of monthly average data from one solar cycle to another display variability with respect to solar cycle phase and show solar ultraviolet radiation variability with solar cycle phase. The diurnal variation shows a noon bite out with a predominant late-afternoon peak except during the maximum phase of the solar cycle. The diurnal Ouagadougou station foF2 data do not show a significant difference between the increasing and decreasing cycle phases, while Dakar station data do show it, particularly for cycle 21. The percentage deviations of diurnal variations from solar-minimum conditions show more ionosphere during solar cycle 21 at both stations for all three of the other phases of the solar cycle. There is no significant variability of ionosphere during increasing and decreasing solar cycle phases at Ouagadougou station, but at Dakar station there is a significant variability of ionosphere during these two solar-cycle phases.


2018 ◽  
Vol 36 (3) ◽  
pp. 809-823 ◽  
Author(s):  
Navin Parihar ◽  
Sandro Maria Radicella ◽  
Bruno Nava ◽  
Yenca Olivia Migoya-Orue ◽  
Prabhakar Tiwari ◽  
...  

Abstract. Simultaneous observations of OI 777.4 and OI 630.0 nm nightglow emissions were carried at a low-latitude station, Allahabad (25.5° N, 81.9° E; geomag. lat.  ∼  16.30° N), located near the crest of the Appleton anomaly in India during September–December 2009. This report attempts to study the F region of ionosphere using airglow-derived parameters. Using an empirical approach put forward by Makela et al. (2001), firstly, we propose a novel technique to calibrate OI 777.4 and 630.0 nm emission intensities using Constellation Observing System for Meteorology, Ionosphere, and Climate/Formosa Satellite Mission 3 (COSMIC/FORMOSAT-3) electron density profiles. Next, the electron density maximum (Nm) and its height (hmF2) of the F layer have been derived from the information of two calibrated intensities. Nocturnal variation of Nm showed the signatures of the retreat of the equatorial ionization anomaly (EIA) and the midnight temperature maximum (MTM) phenomenon that are usually observed in the equatorial and low-latitude ionosphere. Signatures of gravity waves with time periods in the range of 0.7–3.0 h were also seen in Nm and hmF2 variations. Sample Nm and hmF2 maps have also been generated to show the usefulness of this technique in studying ionospheric processes.


2020 ◽  
Vol 11 (08) ◽  
pp. 518-528
Author(s):  
Doua Allain Gnabahou ◽  
Sibri Alphonse Sandwidi ◽  
Frédéric Ouattara

Author(s):  
Xiaohua Mo ◽  
Donghe Zhang ◽  
Jing Liu ◽  
Yongqiang Hao ◽  
Zuo Xiao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document