Hot Strange Stars. I. Equation of State of Hot Strange Quark Matter

Astrophysics ◽  
2014 ◽  
Vol 57 (4) ◽  
pp. 559-569 ◽  
Author(s):  
G. S. Hajyan ◽  
A. G. Alaverdyan
2004 ◽  
Vol 19 (32) ◽  
pp. 2431-2435
Author(s):  
A. R. PRASANNA ◽  
SUBHARTHI RAY

During the last couple of years astronomers and astrophysicists have been debating on the fact whether the so-called "strange stars" — stars made up of strange quark matter, have been discovered with the candidates like SAX J1808.4–3658, 4U 1728–34, RX J1856.5–3754, etc. The main contention has been the estimation of radius of the star for an assumed mass of ~ 1.4 M⊙ and to see whether the point overlaps with the graphs for the neutron star equation of state or whether it goes to the region of stars made of strange matter equation of state. Using the well-established formulae from general relativity for the gravitational redshift and the "lensing effect" due to bending of photon trajectories, we, in this letter, relate the parameters M and R with the observable parameters, the redshift z and the radiation radius R∞, thus constraining both M and R for specific ranges, without any other arbitrariness. With the required inputs from observations, one ought to incorporate the effects of self-lensing of the compact stars which has been otherwise ignored in all of the estimations done so far. Nonetheless, these effects of self-lensing make a marked difference for constraints on the M–R relation.


2000 ◽  
Vol 541 (2) ◽  
pp. L71-L74 ◽  
Author(s):  
Ignazio Bombaci ◽  
Arun V Thampan ◽  
Bhaskar Datta

2003 ◽  
Vol 214 ◽  
pp. 191-198 ◽  
Author(s):  
R. X. Xu

A pedagogical overview of strange quark matter and strange stars is presented. After a historical notation of the research and an introduction to quark matter, a major part is devoted to the physics and astrophysics of strange stars, with attention being paid to the possible ways by which neutron stars and strange stars can be distinguished in astrophysics. Recent possible evidence for bare strange stars is also discussed.


Astrophysics ◽  
1994 ◽  
Vol 37 (3) ◽  
pp. 271-280 ◽  
Author(s):  
Yu. L. Vartanyan ◽  
A. R. Arutyunyan ◽  
A. K. Grigoryan

2017 ◽  
Vol 51 (1 (242)) ◽  
pp. 71-76
Author(s):  
Yu.L. Vartanyan ◽  
A.K. Grigoryan ◽  
H.A. Shahinyan

Equation of state of strange quark matter has been studied in the framework of MIT bag model, when vacuum pressure $B$ depends on concentration of baryons $n$. The actuality of such studies is conditioned by the increasing of quark matter density from surface to star center. In the literature there exist different representations of function $B(n)$. In the present work Gaussian parametrization is used, which is based on the idea of existence of asymptotic limiting value of this parameter. For four groups of parameters the equations of state of quark matter were determined. The main integral parameters of star configurations were obtained by numerically integrating of star equilibrium equations (the TOV equation). In the considered case it turns that when vacuum pressure dependence on concentration of baryons is taken into account, configurations of strange stars have maximal masses less than two solar masses.   Erratum: Proc. YSU A: Phys. Math. Sci. 52 (2018), 68


Sign in / Sign up

Export Citation Format

Share Document