Heat Capacity in Two-Phase Regions and Heat of Phase Transformations of Certain Zr-Nb Binary Alloys

Atomic Energy ◽  
2005 ◽  
Vol 99 (1) ◽  
pp. 451-463 ◽  
Author(s):  
S. G. Popov ◽  
V. N. Proselkov
Author(s):  
V.N. Moraru

The results of our work and a number of foreign studies indicate that the sharp increase in the heat transfer parameters (specific heat flux q and heat transfer coefficient _) at the boiling of nanofluids as compared to the base liquid (water) is due not only and not so much to the increase of the thermal conductivity of the nanofluids, but an intensification of the boiling process caused by a change in the state of the heating surface, its topological and chemical properties (porosity, roughness, wettability). The latter leads to a change in the internal characteristics of the boiling process and the average temperature of the superheated liquid layer. This circumstance makes it possible, on the basis of physical models of the liquids boiling and taking into account the parameters of the surface state (temperature, pressure) and properties of the coolant (the density and heat capacity of the liquid, the specific heat of vaporization and the heat capacity of the vapor), and also the internal characteristics of the boiling of liquids, to calculate the value of specific heat flux q. In this paper, the difference in the mechanisms of heat transfer during the boiling of single-phase (water) and two-phase nanofluids has been studied and a quantitative estimate of the q values for the boiling of the nanofluid is carried out based on the internal characteristics of the boiling process. The satisfactory agreement of the calculated values with the experimental data is a confirmation that the key factor in the growth of the heat transfer intensity at the boiling of nanofluids is indeed a change in the nature and microrelief of the heating surface. Bibl. 20, Fig. 9, Tab. 2.


1988 ◽  
Vol 53 (12) ◽  
pp. 3072-3079
Author(s):  
Mojmír Skokánek ◽  
Ivo Sláma

Molar heat capacities and molar enthalpies of fusion of the solvates Zn(NO3)2 . 2·24 DMSO, Zn(NO3)2 . 8·11 DMSO, Zn(NO3)2 . 6 DMSO, NaNO3 . 2·85 DMSO, and AgNO3 . DMF, where DMSO is dimethyl sulfoxide and DMF is dimethylformamide, have been determined over the temperature range 240 to 400 K. Endothermic peaks found for the zinc nitrate solvates below the liquidus temperature have been ascribed to solid phase transformations. The molar enthalpies of the solid phase transformations are close to 5 kJ mol-1 for all zinc nitrate solvates investigated. The dependence of the molar heat capacity on the temperature outside the phase transformation region can be described by a linear equation for both the solid and liquid phases.


Author(s):  
E.V. Legostaeva ◽  
◽  
M.A. Khimich ◽  
Yu.P. Sharkeev ◽  
A.Yu. Eroshenko ◽  
...  

The effect of heat treatment of the Ti-45Nb alloy in the UFG state on its structural parameters (lattice parameters, volumetric phase ratio, sizes of coherent scattering regions, residual normal stresses) and their relationship with heat capacity have been studied. It has been established that the different character of the temperature dependence of the heat capacity for the Ti-45Nb alloy in the UFG and CC states is associated with the structural-phase features of the alloy in the UFG state: the two-phase structure of a-grains and b-grains, dispersion-hardened by the ω-phase, and phase transitions in the temperature range 400-600 °С.


1996 ◽  
Vol 46 (5-6) ◽  
pp. 383-398 ◽  
Author(s):  
F. Gesmundo ◽  
P. Castello ◽  
F. Viani

2011 ◽  
Vol 108 ◽  
pp. 91-94 ◽  
Author(s):  
Shao Jian He ◽  
Jun Lin

Nanocomposites based on hyperbranched polymers and sodium montmorillonite were prepared over the full range of compositions. The XRD analysis showed the full exfoliation of silicate layers at lower silicate content (up to 9.1 wt%). With the further increase of silicate loading, an intercalated structure was developed with a constant d-spacing due to the unique structure of hyperbranched polymers. The heat capacity jump at the glass transition of the nanocomposites was found to deviate from the two-phase model prediction, indicating the formation of a rigid amorphous fraction. The glass transition temperature and heat capacity jump behaviors suggested that the molecular mobility of hyperbranched polymers were restricted by the introduction of silicate layers. The mechanical properties of the nanocomposites were also investigated.


2000 ◽  
Vol 646 ◽  
Author(s):  
X. Yu ◽  
Y. Yamabe-Mitarai ◽  
Y. Ro ◽  
S. Nakaza ◽  
H. Harada

ABSTRACTA novel method to develop new quaternary alloys with an fcc/L12 coherent structure is proposed. This paper reviews the development of quaternary Ir-Nb-Ni-Al alloys. The microstructure, lattice misfit, and compressive 0.2% flow stress of 15 kinds of alloys were investigated systematically. Two kinds of coherent structures, fcc/L12-Ir3Nb and fcc/ L12-Ni3Al, were observed in most alloys. Two two-phase structures, fcc+L12-Ir3Nb and fcc+L12-Ni3Al, were observed in Ir-rich and Ni-rich regions, respectively. The lattice misfits of quaternary Ir-Nb-Ni-Al alloys were higher than those of Ni- or Ir-base binary alloys. The compressive 0.2% flow stresses of quaternary alloys increased dramatically compared with those of Ni-base superalloys. The quaternary alloys located in the Ir-rich region were not only had higher strength but also better ductility than Ir-base binary alloys. The potential use of quaternary alloys is discussed.


1994 ◽  
Vol 277 ◽  
pp. 163-196 ◽  
Author(s):  
Seyfettin C. Gülen ◽  
Philip A. Thompson ◽  
Hung-Jai Cho

Near-critical states have been achieved downstream of a liquefaction shock wave, which is a shock reflected from the endwall of a shock tube. Photographs of the shocked test fluid (iso-octane) reveal a rich variety of phase-change phenomena. In addition to the existence of two-phase toroidal rings which have been previously reported, two-phase structures with a striking resemblance to dandelions and orange slices have been frequently observed. A model coupling the flow and nucleation dynamics is introduced to study the two-wave system of shock-induced condensation and the liquefaction shock wave in fluids of large molar heat capacity. In analogy to the one-dimensional Zeldovich–von Neumann–Döring (ZND) model of detonation waves, the leading part of the liquefaction shock wave is a gasdynamic pressure discontinuity (Δ ≈ 0.1 μm, τ ≈ 1 ns) which supersaturates the test fluid, and the phase transition takes place in the condensation relaxation zone (Δ ≈ 1–103 μm, τ ≈ 0.1–100 μs) via dropwise condensation. At weak to moderate shock strengths, the average lifetime of the metastable state, τ ∞ 1/J, is long such that the reaction zone is spatially decoupled from the forerunner shock wave, and J is the homogeneous nucleation rate. With increasing shock strength, a transition in the phase-change mechanism from nucleation and growth to spinodal decomposition is anticipated based on statistical mechanical arguments. In particular, within a complete liquefaction shock the metastable region is entirely bypassed, and the vapour decomposes inside the unstable region. This mechanism of unmixing in which nucleation and growth become one continuous process provides a consistent framework within which the observed irregularities can be explained.


Sign in / Sign up

Export Citation Format

Share Document