rigid amorphous
Recently Published Documents


TOTAL DOCUMENTS

99
(FIVE YEARS 18)

H-INDEX

30
(FIVE YEARS 1)

Polymers ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 3349
Author(s):  
Johannes Benz ◽  
Christian Bonten

Above a percolation threshold a flow restriction has to be overcome by higher pressure in plastic processing. Besides amount and geometry of fillers, the interactions of polymer and filler are important. By differing the amorphous phase of polymers into a rigid amorphous and a mobile amorphous fraction, predictions about interactions are possible. The objective is the generation of a flow restriction and the combined investigation of polymer–particle interaction. SiO2 was used up to 50 vol.% in different spherical sizes in PLA and PP. A capillary-rheometer was used as a tool to create a yield point and by that investigations into the state of the flow restriction were possible. All produced compounds showed, in plate-plate rheometry, an increase in viscosity for lower shear rates and a significant change in the storage modulus. In DSC, hardly any specific rigid amorphous fraction was detectable, which suggests that there is a minor interaction between macromolecules and filler. This leads to the conclusion that the change in flow behavior is mainly caused by a direct interaction between the particles, even though they are theoretically too far away from each other. First images in the state of the yield point show a displacement of the particles against each other.


Polymer ◽  
2021 ◽  
pp. 123830
Author(s):  
Wei Wang ◽  
Seif Eddine Fenni ◽  
Zhe Ma ◽  
Maria Cristina Righetti ◽  
Daniele Cangialosi ◽  
...  

2021 ◽  
Vol 22 (4) ◽  
pp. 1871
Author(s):  
Fang Wang ◽  
Yingying Li ◽  
Christopher R. Gough ◽  
Qichun Liu ◽  
Xiao Hu

Biopolymer composites based on silk fibroin have shown widespread potential due to their brilliant applications in tissue engineering, medicine and bioelectronics. In our present work, biocomposite nanofilms with different special topologies were obtained through blending silk fibroin with crystallizable poly(L-lactic acid) (PLLA) at various mixture rates using a stirring-reflux condensation blending method. The microstructure, phase components, and miscibility of the blended films were studied through thermal analysis in combination with Fourier-transform infrared spectroscopy and Raman analysis. X-ray diffraction and scanning electron microscope were also used for advanced structural analysis. Furthermore, their conformation transition, interaction mechanism, and thermal stability were also discussed. The results showed that the hydrogen bonds and hydrophobic interactions existed between silk fibroin (SF) and PLLA polymer chains in the blended films. The secondary structures of silk fibroin and phase components of PLLA in composites vary at different ratios of silk to PLLA. The β-sheet content increased with the increase of the silk fibroin content, while the glass transition temperature was raised mainly due to the rigid amorphous phase presence in the blended system. This results in an increase in thermal stability in blended films compared to the pure silk fibroin films. This study provided detailed insights into the influence of synthetic polymer phases (crystalline, rigid amorphous, and mobile amorphous) on protein secondary structures through blending, which has direct applications on the design and fabrication of novel protein–synthetic polymer composites for the biomedical and green chemistry fields.


Polymers ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 272
Author(s):  
Bindu Patanair ◽  
Allisson Saiter-Fourcin ◽  
Sabu Thomas ◽  
Martin George Thomas ◽  
Poornima Parathukkamparambil Pundarikashan ◽  
...  

In this paper, the calorimetric response of the amorphous phase was examined in hybrid nanocomposites which were prepared thanks to a facile synthetic route, by adding reduced graphene oxide (rGO), Cloisite 30B (C30B), or multiwalled carbon nanotubes (MWCNT) to lignin-filled poly(lactic acid) (PLA). The dispersion of both lignin and nanofillers was successful, according to a field-emission scanning-electron microscopy (FESEM) analysis. Lignin alone essentially acted as a crystallization retardant for PLA, and the nanocomposites shared this feature, except when MWCNT was used as nanofiller. All systems exhibiting a curtailed crystallization also showed better thermal stability than neat PLA, as assessed from thermogravimetric measurements. As a consequence of favorable interactions between the PLA matrix, lignin, and the nanofillers, homogeneous dispersion or exfoliation was assumed in amorphous samples from the increase of the cooperative rearranging region (CRR) size, being even more remarkable when increasing the lignin content. The amorphous nanocomposites showed a signature of successful filler inclusion, since no rigid amorphous fraction (RAF) was reported at the filler/matrix interface. Finally, the nanocomposites were crystallized up to their maximum extent from the glassy state in nonisothermal conditions. Despite similar degrees of crystallinity and RAF, significant variations in the CRR size were observed among samples, revealing different levels of mobility constraining in the amorphous phase, probably linked to a filler-dimension dependence of space filling.


RSC Advances ◽  
2021 ◽  
Vol 11 (41) ◽  
pp. 25731-25737
Author(s):  
Maria Cristina Righetti ◽  
Maria Laura Di Lorenzo ◽  
Patrizia Cinelli ◽  
Massimo Gazzano

At room temperature and at the human body temperature, all the amorphous fraction is mobile in poly(butylene succinate).


2020 ◽  
Vol 53 (20) ◽  
pp. 8741-8750 ◽  
Author(s):  
Xavier Monnier ◽  
Dario Cavallo ◽  
Maria Cristina Righetti ◽  
Maria Laura Di Lorenzo ◽  
Sara Marina ◽  
...  

2020 ◽  
Vol 32 (18) ◽  
pp. 8020-8033
Author(s):  
Raghuram Thyagarajan ◽  
David S. Sholl

Sign in / Sign up

Export Citation Format

Share Document