2016–2017 Central Italy seismic sequence: strong-motion data analysis and design earthquake selection for seismic microzonation purposes

2019 ◽  
Vol 18 (12) ◽  
pp. 5533-5551 ◽  
Author(s):  
Lucia Luzi ◽  
Francesca Pacor ◽  
Giovanni Lanzano ◽  
Chiara Felicetta ◽  
Rodolfo Puglia ◽  
...  
2016 ◽  
Vol 59 ◽  
Author(s):  
Marco Massa ◽  
Ezio D'Alema ◽  
Chiara Mascandola ◽  
Sara Lovati ◽  
Davide Scafidi ◽  
...  

<p><em>ISMD is the real time INGV Strong Motion database. During the recent August-September 2016 Amatrice, Mw 6.0, seismic sequence, ISMD represented the main tool for the INGV real time strong motion data sharing.  Starting from August 24<sup>th</sup>,  the main task of the web portal was to archive, process and distribute the strong-motion waveforms recorded  by the permanent and temporary INGV accelerometric stations, in the case of earthquakes with magnitude </em><em>≥</em><em> 3.0, occurring  in the Amatrice area and surroundings.  At present (i.e. September 30<sup>th</sup>, 2016), ISMD provides more than 21.000 strong motion waveforms freely available to all users. In particular, about 2.200 strong motion waveforms were recorded by the temporary network installed for emergency in the epicentral area by SISMIKO and EMERSITO working groups. Moreover, for each permanent and temporary recording site, the web portal provide a complete description of the necessary information to properly use the strong motion data.</em></p>


2017 ◽  
Vol 88 (5) ◽  
pp. 1219-1231 ◽  
Author(s):  
Lucia Luzi ◽  
Francesca Pacor ◽  
Rodolfo Puglia ◽  
Giovanni Lanzano ◽  
Chiara Felicetta ◽  
...  

2009 ◽  
Vol 47 (4) ◽  
Author(s):  
B. Hernandez ◽  
M. Cocco ◽  
F. Cotton ◽  
S. Stramondo ◽  
O. Scotti ◽  
...  

2016 ◽  
Vol 59 ◽  
Author(s):  
Chiara Ladina ◽  
Simone Marzorati ◽  
Giancarlo Monachesi ◽  
Marco Cattaneo ◽  
Massimo Frapiccini ◽  
...  

<p>The Marche Region, in collaboration with INGV, has promoted a project to monitoring public strategic buildings with permanent accelerometer installed at the base of the structures. Public <ins cite="mailto:chiara" datetime="2016-09-27T12:50">structures</ins> play a primary role to maintain the functionality of a local community. Information about vibratory characteristics of the building and subsoil, in addition to the seismic instrumental history that describe the seismic shaking at the base of the structure are collected for each buildings. The real-time acquisition of seismic data allows to obtain accelerometric time history soon after the occurrence of an earthquake. The event of 24 August 2016 in Central Italy was an opportunity to test the functionality of this implemented system. In this work the parameters obtained from strong motion data recorded at the base of the structures were analyzed and the values obtained were inserted with some <ins cite="mailto:mnoise" datetime="2016-09-26T10:13">empirical relationships </ins>used to provide intensity microseismic values and damage indices.</p>


2019 ◽  
Vol 11 (12) ◽  
pp. 1482 ◽  
Author(s):  
Daniele Cheloni ◽  
Nicola D’Agostino ◽  
Laura Scognamiglio ◽  
Elisa Tinti ◽  
Christian Bignami ◽  
...  

On 18 January 2017, the 2016–2017 central Italy seismic sequence reached the Campotosto area with four events with magnitude larger than 5 in three hours (major event MW 5.5). To study the slip behavior on the causative fault/faults we followed two different methodologies: (1) we use Interferometric Synthetic Aperture Radar (InSAR) interferograms (Sentinel-1 satellites) and Global Positioning System (GPS) coseismic displacements to constrain the fault geometry and the cumulative slip distribution; (2) we invert near-source strong-motion, high-sampling-rate GPS waveforms, and high-rate GPS-derived static offsets to retrieve the rupture history of the two largest events. The geodetic inversion shows that the earthquake sequence occurred along the southern segment of the SW-dipping Mts. Laga normal fault system with an average slip of about 40 cm and an estimated cumulative geodetic moment of 9.29 × 1017 Nm (equivalent to a MW~6). This latter estimate is larger than the cumulative seismic moment of all the events, with MW > 4 which occurred in the corresponding time interval, suggesting that a fraction (~35%) of the overall deformation imaged by InSAR and GPS may have been released aseismically. Geodetic and seismological data agree with the geological information pointing out the Campotosto fault segment as the causative structure of the main shocks. The position of the hypocenters supports the evidence of an up-dip and northwestward rupture directivity during the major shocks of the sequence for both static and kinematic inferred slip models. The activated two main slip patches are characterized by rise time and peak slip velocity in the ranges 0.7–1.1 s and 2.3–3.2 km/s, respectively, and by ~35–50 cm of slip mainly concentrated in the shallower northern part of causative fault. Our results show that shallow slip (depth < 5 km) is required by the geodetic and seismological observations and that the inferred slip distribution is complementary with respect to the previous April 2009 seismic sequence affecting the southern half of the Campotosto fault. The recent moderate strain-release episodes (multiple M~5–5.5 earthquakes) and the paleoseismological evidence of surface-rupturing events (M~6.5) suggests therefore a heterogeneous behavior of the Campotosto fault.


Sign in / Sign up

Export Citation Format

Share Document