Stiffness degradation of shear walls under cyclic loading: experimental study and modelling

2019 ◽  
Vol 17 (9) ◽  
pp. 5183-5216 ◽  
Author(s):  
Xiangyong Ni ◽  
Shuangyin Cao ◽  
Yizhu Li ◽  
Shuai Liang
2014 ◽  
Vol 8 (1) ◽  
pp. 166-171 ◽  
Author(s):  
Qinyan Zhao ◽  
Zhongyong Zhang ◽  
Jiliang Liu ◽  
Mingjin Chu

To study mechanical behaviors of shear walls built with precast two-way hollow slabs, two shear walls with different details of hollow slabs were quasi-statically tested under low cyclic loading. The failure mode was analyzed, which vertical macro-cracks appeared on walls due to the details of hollow slabs. Brittle shear failure can be avoided in terms of the failure behaviors evolved from integral wall to the combination of wall and columns. Test results also show that that dimension of transverse holes can affect compressive capacity of the walls when it is larger than that of longitudinal holes in the hollow slab.


2018 ◽  
Vol 22 (4) ◽  
pp. 04018017 ◽  
Author(s):  
Kailai Deng ◽  
Peng Pan ◽  
Shaodong Shen ◽  
Haishen Wang ◽  
Peng Feng

2021 ◽  
Vol 64 (2) ◽  
pp. 413-424
Author(s):  
Khoi D. Mai ◽  
William F. Cofer ◽  
Donald A. Bender

HighlightsA finite element analysis (FEA) model was developed to predict behavior of steel-clad, wood-framed (SCWF) shear walls under cyclic loading.This FEA model will be useful in determining post-frame building response to seismic forces.The model will save time and money in developing design coefficients and planning experiments for SCWF shear walls.Abstract. This article presents finite element (FEA) model results of steel-clad, wood-framed (SCWF) shear walls under cyclic lateral loading. The shear wall model consists of beam elements to model framing members, equivalent orthotropic plane stress elements to model corrugated steel cladding, linear spring elements to model nail connectors between framing members, and nonlinear hysteresis spring elements to model screw connectors. Screw connectors attaching steel panels to wood framing and steel panels to steel panels at lap joints were tested under cyclic loading to provide the constitutive relationships needed. A modified Bouc-Wen-Barber-Noori (BWBN) model was developed to capture slack, pinching, and strength and stiffness degradation of screw connectors under cyclic loading. The finite element models were validated by comparing them with experimental test results of six different SCWF shear wall configurations. Predicted peak shear strengths for most load cycles were slightly higher than those from the experimental tests, especially for stitched shear walls. Visual inspection of the FEA predicted hysteretic load curves demonstrated that pinching, and strength and stiffness degradation were well captured. The results of this study demonstrate the utility of the FEA model for comparative studies of different SCWF shear wall constructions under cyclic lateral loading. Keywords: Cyclic lateral loading, Diaphragm design, Post-frame building, Steel-clad wood-frame diaphragm.


2021 ◽  
Vol 283 ◽  
pp. 122794
Author(s):  
Ling-Yu Zhou ◽  
Lei Zhao ◽  
Akim D. Mahunon ◽  
Ying-Ying Zhang ◽  
Hua-Yong Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document