Seismic collapse fragility of low-rise steel moment frames with mass irregularity based on shaking table test

2021 ◽  
Vol 19 (6) ◽  
pp. 2457-2482
Author(s):  
Yongtao Bai ◽  
Yinsheng Li ◽  
Zhenyun Tang ◽  
Marius Bittner ◽  
Matteo Broggi ◽  
...  
2020 ◽  
Vol 20 (06) ◽  
pp. 2040005
Author(s):  
Han Peng ◽  
Jinping Ou ◽  
Andreas Schellenberg ◽  
Frank Mckenna ◽  
Stephen Mahin

This paper presents an investigation on the seismic behavior of steel moment frames with mechanical hinge beam-to-column connections. The connection uses a mechanical hinge to carry shear force and a pair of buckling-restrained steel plates bolted to the beam flange to transfer bending moment. The moment-rotation behavior of the connection was theoretically studied. A nonlinear numerical model for steel moment frames under strong earthquakes was developed and validated using a shaking table test of an 18-story steel moment frame at the E-Defense facility. Then, nonlinear static and time-history analyses were conducted to compare the seismic behavior of a conventional steel moment frame and three innovative steel frames equipped mechanical hinge connections in terms of roof displacement, base shear, inter-story drift ratio, and plastic hinge rotation.


2018 ◽  
Vol 144 (9) ◽  
pp. 04018145 ◽  
Author(s):  
Tung-Yu Wu ◽  
Sherif El-Tawil ◽  
Jason McCormick

Author(s):  
Yuka MATSUMOTO ◽  
Satoshi YAMADA ◽  
Ken OKADA ◽  
Masatoshi IDE ◽  
Toru TAKEUCHI ◽  
...  

2006 ◽  
Vol 22 (2) ◽  
pp. 367-390 ◽  
Author(s):  
Erol Kalkan ◽  
Sashi K. Kunnath

This paper investigates the consequences of well-known characteristics of near-fault ground motions on the seismic response of steel moment frames. Additionally, idealized pulses are utilized in a separate study to gain further insight into the effects of high-amplitude pulses on structural demands. Simple input pulses were also synthesized to simulate artificial fling-step effects in ground motions originally having forward directivity. Findings from the study reveal that median maximum demands and the dispersion in the peak values were higher for near-fault records than far-fault motions. The arrival of the velocity pulse in a near-fault record causes the structure to dissipate considerable input energy in relatively few plastic cycles, whereas cumulative effects from increased cyclic demands are more pronounced in far-fault records. For pulse-type input, the maximum demand is a function of the ratio of the pulse period to the fundamental period of the structure. Records with fling effects were found to excite systems primarily in their fundamental mode while waveforms with forward directivity in the absence of fling caused higher modes to be activated. It is concluded that the acceleration and velocity spectra, when examined collectively, can be utilized to reasonably assess the damage potential of near-fault records.


Sign in / Sign up

Export Citation Format

Share Document