Construction of multi-functional extracellular matrix proteins that inhibits migration and tube formation of endothelial cells

2011 ◽  
Vol 34 (8) ◽  
pp. 1571-1577 ◽  
Author(s):  
Makiko Nakamura ◽  
Masayasu Mie ◽  
Makoto Nakamura ◽  
Eiry Kobatake
Biomaterials ◽  
2008 ◽  
Vol 29 (20) ◽  
pp. 2977-2986 ◽  
Author(s):  
Makiko Nakamura ◽  
Masayasu Mie ◽  
Hisakazu Mihara ◽  
Makoto Nakamura ◽  
Eiry Kobatake

Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 698-698 ◽  
Author(s):  
Thomas A J Mckinnon ◽  
Richard D Starke ◽  
Kushani Ediriwickrema ◽  
Anna Maria Randi ◽  
Michael Laffan

Abstract Abstract 698 Von Willebrand Factor (VWF) is a large multimeric plasma glycoprotein essential for homeostasis, also involved in inflammation and angiogenesis. The majority of VWF is synthesised by endothelial cells (EC) and is either constitutively secreted or stored in Weibel-Palade bodies (WPB), ready to be released in response to endothelial stimulation. Several studies have shown that formation of WPB is dependent on the presence of VWF, and deletion of VWF in human umbilical vein EC (HUVEC) results in loss of WPB. Amongst the other proteins shown to co-localise to WPB is angiopoietin-2 (Ang2), a ligand of the receptor tyrosine kinase Tie-2. Ang2 regulates endothelial cell survival, vascular stability and maturation, by destabilizing quiescent endothelium and facilitating the response to inflammatory and angiogenic stimuli. VWF is required for storage of Ang2, and release of Ang-2 from EC is increased in VWF-deficient HUVEC. Recently, we have shown that VWF itself regulates angiogenesis, raising the hypothesis that some of the angiogenic activity of VWF may be mediated by Ang-2. In the present study we investigated the interaction between Ang2 and VWF. Binding analysis demonstrated that recombinant human Ang2 bound to purified plasma-derived VWF in a pH and calcium dependent manner, with optimal binding occurring at pH 6.5 and 10mM calcium, indicative of binding within the Golgi body. Generation of binding isotherms established that Ang2 bound to VWF with high affinity (KD∼3nM); furthermore binding affinity was not dependent on VWF conformation. Using an array of VWF constructs we determined that Ang2 bound predominantly to the VWF A1 domain, which also contains binding sites to the platelet receptor GPIb and extracellular matrix proteins. Co-immunoprecipitation experiments performed on TNFα- and ionomycin-stimulated HUVECs, to induce WPB exocytosis, confirmed that a portion of Ang2 remained bound to secreted VWF. Moreover, immunofluorescence staining of histamine-stimulated HUVECs to induce VWF release demonstrated the presence of Ang2 on VWF strings secreted from ECs. Finally we demonstrated that Ang2 bound to VWF was still able to interact with Tie-2. These data demonstrate that binding of Ang2 to VWF occurs within the cell; we propose that this is the mechanism mediating storage of Ang2 in WPB. Moreover, the finding that the Ang2-VWF interaction is preserved following secretion raises the intriguing possibility VWF may affect Ang2 function, possibly by localising Ang2 to the Tie 2 receptor under the shear forces experienced in flowing blood. Similarly, Ang-2 binding to VWF may modulate its interaction with receptors and extracellular matrix proteins, and ultimately influence the role of VWF in the angiogenic processes. Disclosures: No relevant conflicts of interest to declare.


2021 ◽  
Author(s):  
Smaro Panagiotidou ◽  
Marina Anastasiou ◽  
Pilar Alcaide ◽  
Mercio A. Perrin

The Chagas disease parasite Trypanosoma cruzi must extravasate to home in on susceptible cells residing in most tissues. It remains unknown how T. cruzi undertakes this crucial step of its life cycle. We hypothesized that the pathogen exploits the endothelial cell programming leukocytes use to extravasate to sites of inflammation. Transendothelial migration (TEM) starts after inflammatory cytokines induce E-selectin expression and P-selectin translocation on endothelial cells (ECs), enabling recognition by leukocyte ligands that engender rolling cell adhesion. Here we show that T. cruzi upregulates E- and P-selectins in cardiac ECs to which it binds in a ligand-receptor fashion, whether under static or shear flow conditions. Glycoproteins isolated from T. cruzi (TcEx) specifically recognize P-selectin in a ligand-receptor interaction. As with leukocytes, binding of P-selectin to T. cruzi or TcEx requires sialic acid and tyrosine sulfate, which are pivotal for downstream migration across ECs and extracellular matrix proteins. Additionally, soluble selectins, which bind T. cruzi , block transendothelial migration dose-dependently, implying that the pathogen bears selectin-binding ligand(s) that start transmigration. Furthermore, function-blocking antibodies against E- and P-selectins, which act on endothelial cells and not T. cruzi , are exquisite in preventing TEM. Thus, our results show that selectins can function as mediators of T. cruzi transendothelial transmigration, suggesting a pathogenic mechanism that allows homing in of the parasite on targeted tissues. As selectin inhibitors are sought-after therapeutic targets for autoimmune diseases and cancer metastasis, they may similarly represent a novel strategy for Chagas disease therapy.


1989 ◽  
pp. 141-147 ◽  
Author(s):  
Elisabetta Dejana ◽  
G. Conforti ◽  
A. Zanetti ◽  
M. G. Lampugnani ◽  
P. C. Marchisio

1991 ◽  
Vol 66 (06) ◽  
pp. 715-724 ◽  
Author(s):  
Albert Dekker ◽  
André A Poot ◽  
Jan A van Mourik ◽  
Martin P A Workel ◽  
Tom Beugeling ◽  
...  

SummaryEndothelial cell seeding may improve the patency of synthetic vascular grafts provided that platelet reactivity of non-endothelialized sites is not increased. We have investigated if surface-adsorbed monoclonal antibodies directed against endothelial cell membrane proteins and against extracellular matrix proteins promote the adhesion and proliferation of cultured human endothelial cells, without causing platelet deposition at non-endothelialized sites. Adhesion of endothelial cells onto polyethylene coated with monoclonal antibodies directed against endothelial cell-specific membrane antigens, integrin receptors and glycoprotein CD31 was equal to or higher than adhesion onto fibronectin-coated polyethylene. Endothelial cells did not proliferate on these surface-adsorbed antibodies. However, pre-coating of polyethylene with mixtures of endothelial cell-specific monoclonal antibodies and monoclonal antibodies directed against fibronectin or von Willebrand factor, resulted in relatively high adhesion and optimal proliferation. Platelet reactivity of the polyethylene surface was found to significantly increase after adsorption of fibronectin, endothelial cell-specific monoclonal antibody or its Fc fragments. In contrast, adsorption of F(ab')2 fragments of endothelial cell-specific monoclonal antibody did not promote platelet deposition. Therefore, it is concluded that coating of vascular graft materials with mixtures of F(ab')2 fragments of monoclonal antibodies specifically directed against endothelial cells and against extracellular matrix proteins may be an effective way to both promote the growth of seeded endothelial cells and limit platelet-graft interaction.


Sign in / Sign up

Export Citation Format

Share Document