Allelopathic effects of sunflower extracts on mustard seed germination and seedling growth

2006 ◽  
Vol 50 (1) ◽  
pp. 156-158 ◽  
Author(s):  
R. Bogatek ◽  
A. Gniazdowska ◽  
W. Zakrzewska ◽  
K. Oracz ◽  
S. W. Gawronski
Author(s):  
Weihong Sun ◽  
Guofeng Yang ◽  
Lili Cong ◽  
Juan Sun ◽  
Lichao Ma

Background: Plant allelopathy refers to the release of chemicals from plants or microorganisms into the environment, may have direct or indirect, beneficial or harmful effects on other plants or microorganisms. When plants grow in an unfavorable environment,more allelochemicals will be secreted and the expression of allelopathic effects will increase, giving plants a certain competitive advantage. Hairy vetch is one of the most promising allelopathic crops and the aqueous extract of hairy vetch has an inhibitory effect on the root length and seedling height of grass crops. The current study aimed to study the allelopathic effect of hairy vetch on alfalfa, and exploring an ecological method to remove the root system of alfalfa.Methods: In this experiment, the allelopathic effects of the seeds, stems and leaves, roots extracts and root exudates (0, 3, 6, 9 and 12 mg·mL-1) on the seed germination and seedling growth of alfalfa were evaluated. And the main allelopathic substances from the stem and leaf extract were isolated and identified using high performance liquid chromatography- mass spectrometry (HPLC-MS).Result: The results showed that all of the extracts can inhibit alfalfa seed germination and seedling growth and stem and leaf extract had the strongest inhibitory effect, especially for inhibiting the root growth. A main allelochemical substance, o-coumaric acid, was screened out and the root length of alfalfa was completely inhibited at 1.6 mg·mL-1 of o-coumaric acid. The findings of these experiments show hairy vetch has strong allelopathic effect on alfalfa and o-coumaric acid is a chemical growth inhibitor.


Weed Science ◽  
1984 ◽  
Vol 32 (6) ◽  
pp. 757-761 ◽  
Author(s):  
Nagi Reddy Achhireddy ◽  
Megh Singh

Allelopathic effects of lantana (Lantana camaraL. ♯3LANCA) residues (root, shoot), foliar leachates, and the soil (where lantana was grown) on milkweedvine (Morrenia odorataLindl. ♯3MONOD) seed germination and growth over a 30-day period were examined. Foliar leachates or the soil collected from the field where lantana had been growing had no effect on the final germination percentage or the seedling growth of milkweedvine. Incorporation of dried lantana shoot or root material into soil had no effect on the final percentage germination but caused significant reductions in milkweedvine growth over a 30-day test period. Roots were more inhibitory than shoots. Fifty percent of milkweedvine seedlings died within 15 days after germination at 1% (w/w) dried lantana root incorporation into the soil, and higher concentrations increased seedling death. Lantana roots incorporated into the soil produced foliar symptoms such as wilting and desiccation, whereas lantana shoots incorporated into the soil produced yellowing of the foliage of milkweedvine. Allelopathic activity of lantana residues was still strong even after decomposition of lantana residues for 4 weeks prior to the planting of milkweedvine seeds.


Botany ◽  
2020 ◽  
Vol 98 (5) ◽  
pp. 273-281
Author(s):  
Chadlia Hachani ◽  
Mohammed S. Lamhamedi ◽  
Mejda Abassi ◽  
Zoubeir Béjaoui

Biodiversity has been confronted with anthropogenic threats and several natural threats such as biological invasions. The success of these invasions involves phytotoxic products released by invasive plants that can exhibit allelopathic effects on target species. Thus, aqueous extracts from different parts of the Mediterranean yellow star-thistle [Centaurea solstitialis subsp. schouwii (DC.) Gugler], were tested for their allelopathic effects on seed germination and seedling growth of Sulla coronaria (L.). Bioassays were conducted in vitro to test the effects of the aqueous extracts of shoot, basal and root parts of C. solstitialis subsp. schouwii at two different concentrations (50 g·L−1 and 10 g·L−1). The concentrations of total polyphenols, flavonoids, and tannins of the extracts were also evaluated. Our results showed inhibitory effects on the germination and seedling growth of S. coronaria seedlings, particularly with the extract form the basal part, reaching 84%. This study confirms the linear relationships between the allelopathic effects of C. solstitialis subsp. schouwii and the polyphenol and flavonoid contents. However, further experiments are needed under field conditions to confirm the results obtained under laboratory conditions.


CORD ◽  
2020 ◽  
Vol 36 ◽  
pp. 41-46
Author(s):  
S.H.S. Senarathne ◽  
S. S. Udumann

Vernonia zeylanica (L.) belongs to the family Asteraceae, is one of the major endemic weed species present in coconut (Cocos nucifera L.) plantations of the tropics, which propagates very easily.  There is a possibility that this plant could also possess allelopathic effects, but this has not been scientifically tested.  Thus, a study was carried out to determine the seed germination of V. zeylanica under soil moisture stress conditions, shoot propagation methods and possible allopathic effects of this species, on selected species in bioassay tests.  Germination of V. zeylanica seeds was not observed at higher osmotic potential (-0.9 MPa).  The highest sprouting percentage of this species were obtained with soft wood cuttings.  The aqueous leaf extract was highly phytotoxic, and it significantly reduced germination and seedling growth of all bioassay species tested. Full strength (33.3 g L-1) aqueous extracts of leaves significantly reduced the germination percentage, root and hypocotyl growth rates of all species tested.  The inhibitory effects were often dependent on concentration.  However, the degree of inhibition varied among the test plant species.  The seedling emergences of all four tested plants were severally inhibited when planted in V. zeylanica contaminated soil.  The results indicated that incorporated aqueous leaf extract of V. zeylanica and its rhizosphere contaminated soil can suppress seed germination, seedling growth and seedling emergence of certain plant species indicating a possible allelopathic effect.


Sign in / Sign up

Export Citation Format

Share Document